Tool wear and cutting forces when machining inconel 718 under cryogenic conditions: Liquid nitrogen and carbon dioxide
Communication avec acte
Résumé
Nickel-based superalloys are widely exploited in turbojets components which are subjected to intense thermal and mechanical loadings during their operation. In fact, they exhibit excellent mechanical properties over a wide range of temperature and high corrosion and creep resistance. However, these materials induce several problems related to the shaping by machining due to essentially high heat resistance, high hardening tendency, high chemical affinity with tool material and low thermal conductivity leading to very high temperature in the cutting zone. In this context, assisted machining processes aim to improve the productivity of certain materials that are difficult to cut. Indeed, in order to keep the tool cold, it has been proposed to use cryogenic fluids (liquid nitrogen LN2 and carbon dioxide CO2 as coolant for effectively reducing temperatures since their vaporization temperatures are equal to -196°C and -75°C respectively. In this context, previous researches have focused on the study of the efficiency of this technique with respect to the machinability of several materials such as titanium alloys and nickel-based alloys. It has been shown that the tool life is improved when machining titanium alloys, unlike nickel-based alloys. For this reason, this paper is devoted to a comparison between two cryogenic fluids (LN2 and CO2) with regard to their effects on tool life when machining Inconel 718 considering as a reference the conventional lubrication. Results showed that tool life is the longest in conventional lubrication. However, under cryogenic conditions, tool life is the shortest in the case of LN2 condition whereas CO2 condition exhibits lower value compared to the traditional lubrication.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureCHAABANI, Sana; ARRAZOLA, Pedro José; AYED, Yessine; MADARIAGA, Aitor; TIDU, Albert; GERMAIN, Guénaël (Elsevier, 2020)The most important challenges when machining difficult-to-cut alloys used in critical applications consist mainly in increasing tool life as well as improving the component surface integrity. In particular, the nickel based ...
-
Communication avec acteCHAABANI, Sana; ARRAZOLA, Pedro José; AYED, Yessine; MADARIAGA, Aitor; TIDU, Albert; GERMAIN, Guénaël (Elsevier BV, 2020)Surface integrity induced by machining process affects strongly the performance of functional products, for instance, the fatigue life as well as the resistance to stress corrosion cracking. Consequently, it is relevant ...
-
Article dans une revue avec comité de lectureUMBRELLO, Domenico; MATSUMURA, Takashi; ARRAZOLA, Pedro José; GERMAIN, Guénaël; COURBON, Cédric (Springer Science and Business Media LLC, 2022-04-07)AbstractThis paper reports on the state of the art in the experimental and numerical investigations of cutting and machining processes. The contributions on the above-mentioned processes and published on the Proceedings ...
-
Article dans une revue avec comité de lectureITURBE, Ariane; GIRAUD, Eliane; HORMAETXE, Exabier; GARAY, Ainhara; GERMAIN, Guénaël; OSTOLAZA, Koldo; ARRAZOLA, Pedro José (Elsevier, 2019)Corrigendum to “Mechanical characterization and modelling of Inconel 718 material behavior for machining process assessment” [Mater. Sci. Eng. A 682 (2017) 441–453]
-
Article dans une revue avec comité de lectureITURBE, Ariane; GIRAUD, Eliane; HORMAETXE, Exabier; GARAY, Ainhara; GERMAIN, Guénaël; OSTOLAZA, Koldo; ARRAZOLA, Pedro José (Elsevier BV, 2017)Nickel based alloys are extensively used in the aerospace industry due to the excellent corrosion resistance and high mechanical properties that are maintained up to elevated temperatures (600–800 °C). However, these ...