Simulation of Structural Applications and Sheet Metal Forming Processes Based on Quadratic Solid–Shell Elements with Explicit Dynamic Formulation
Article dans une revue avec comité de lecture
Date
2019Journal
International Journal of Applied MechanicsRésumé
In this work, nonlinear dynamic analysis of thin structures is investigated using quadratic solid–shell (SHB-EXP) elements. The proposed SHB-EXP elements are based on a fully three-dimensional formulation using an in-plane reduced-integration scheme along with the assumed-strain method in order to alleviate most locking phenomena. These developments consist of a 20-node hexahedral element, denoted SHB20-EXP, and its 15-node prismatic counterpart, denoted SHB15-EXP. The formulation of these elements is combined with fully three-dimensional behavior models, including elastic behavior as well as anisotropic plastic behavior for metallic materials. The resulting formulations are implemented into the ABAQUS explicit/dynamic software package in the framework of large displacements and rotations. First, to assess the performance of the SHB-EXP elements, four representative nonlinear dynamic benchmark tests have been conducted. Then, impact/crash problem and deep drawing of cylindrical cup have been performed to demonstrate the capabilities of the SHB-EXP elements in handling various types of nonlinearities (large strains, anisotropic plasticity, and double-sided contact). Comparisons with results obtained by ABAQUS elements as well as with reference solutions taken from the literature show the good capabilities of the developed quadratic SHB-EXP elements for the explicit dynamic simulation of thin structures.
Fichier(s) constituant cette publication
- Nom:
- LEM3_IJAM_CHALAL_2019.pdf
- Taille:
- 1.229Mo
- Format:
- Description:
- Article principal
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThe localization of deformation into planar bands is often considered as the ultimate stage of strain prior to ductile fracture. In this study, ductility limits of metallic materials are predicted using the Gurson–Tverga ...
-
Article dans une revue avec comité de lectureThin structures are commonly designed and employedin engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural ...
-
Ductility limit prediction using a GTN damage model coupled with localization bifurcation analysis Article dans une revue avec comité de lectureBecause the localization of deformation into narrow planar bands is often precursor to material failure, several approaches have been proposed to predict this phenomenon. In this paper, the Gurson–Tvergaard– Needleman (GTN) ...
-
Article dans une revue avec comité de lectureThis paper proposes two linear solid‒shell finite elements for the three-dimensional modeling of thin structures in the context of explicit dynamic analysis. These solid‒shell formulations, which are extensions of their ...
-
Article dans une revue avec comité de lectureThe current contribution proposes two quadratic, prismatic and hexahedral, solid–shell elements for the geometric nonlinear analysis of laminated composite structures. The formulation of the proposed solid–shell elements ...