• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of Machine Learning Tools for the Improvement of Reactive Extrusion Simulation

Article dans une revue avec comité de lecture
Auteur
CASTÉRAN, Fanny
194495 Université Claude Bernard Lyon 1 [UCBL]
IBANEZ, Ruben
ARGERICH, Clara
DELAGE, Karim
194495 Université Claude Bernard Lyon 1 [UCBL]
CASSAGNAU, Philippe
194495 Université Claude Bernard Lyon 1 [UCBL]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/19991
DOI
10.1002/mame.202000375
Date
2020
Journal
Macromolecular Materials and Engineering

Résumé

The purpose of this paper is to combine a classical 1D twin-screw extrusion model with machine learning techniques to obtain accurate predictions of a complex system despite few data. Systems involving reactive polyethylene oligomer dispersed in situ in a polypropylene matrix by reactive twin-screw extrusion are studied for this purpose. The twin-screw extrusion simulation software LUDOVIC is used and machine learning techniques dealing with low data limit are used as a correction of the simulation.

Fichier(s) constituant cette publication

Nom:
PIMM_MME_2020_IBANEZ.pdf
Taille:
2.064Mo
Format:
PDF
Description:
Article
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Autres équipes
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; HASCOET, Nicolas; CASSAGNAU, Philippe; ccGHNATIOS, Chady; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...
  • Data-Driven Modelling of Polyethylene Recycling under High-Temperature Extrusion 
    Article dans une revue avec comité de lecture
    CASTÉRAN, Fanny; DELAGE, Karim; HASCOËT, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; CASSAGNAU, Philippe (MDPI AG, 2022-02-18)
    Two main problems are studied in this article. The first one is the use of the extrusion process for controlled thermo-mechanical degradation of polyethylene for recycling applications. The second is the data-based modelling ...
  • Code2vect: An efficient heterogenous data classifier and nonlinear regression technique 
    Article dans une revue avec comité de lecture
    ARGERICH MARTÍN, Clara; IBÁÑEZ PINILLO, Rubén; BARASINSKI, Anaïs; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The aim of this paper is to present a new classification and regression algorithm based on Artificial Intelligence. The main feature of this algorithm, which will be called Code2Vect, is the nature of the data to treat: ...
  • Tape surface characterization and classification in automated tape placement processability: Modeling and numerical analysis 
    Article dans une revue avec comité de lecture
    ARGERICH, Clara; IBÁÑEZ, Rubén; LEÓN, Angel; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (AIMS Press, 2018)
    Abstract: Many composite forming processes are based on the consolidation of preimpregnated preforms of different types, e.g., sheets, tapes, .... Composite plies are put in contact using different technologies and ...
  • From linear to nonlinear PGD-based parametric structural dynamics 
    Article dans une revue avec comité de lecture
    QUARANTA, Giacomo; ARGERICH MARTIN, Clara; IBÁÑEZ, Rubén; DUVAL, Jean Louis; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2019)
    The present paper analyzes different integration schemes of solid dynamics in the frequency domain involving the so-called Proper Generalized Decomposition – PGD. The last framework assumes for the solution a parametric ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales