Kinetic Monte Carlo simulation of random deposition and scaling behavior with respect to the germination length
Article dans une revue avec comité de lecture
Date
2021Journal
International Journal of Computational Materials Science and EngineeringRésumé
This work aims at analyzing the scaling behavior and develop correlations during surface growing for different germination lengths. The surface growing by random deposition is simulated using a kinetic Monte Carlo approach, by considering different germination lengths. Different surface descriptors are extracted, among them the roughness and the correlation. The former allows extracting the scaling behavior, while the latter proves the existence of correlations independent of the system size but dependent on the germination length. Moreover, as in the case of random deposition with a null germination length, the growing roughness never saturates.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureABDENOUR, Saoudi; LINDA, Aissani; OUALID, Chahaoui; ALI, Bestandji; SALAH, Louafi Mohammed; HAMID, Djebaili; FRANCISCO, Chinesta (IOP Publishing, 2021)This study focuses on the effect of carburization time on the structural and mechanical properties of low carbon XC20 mild steel (C. Wt.% <0.25). The XC20 steel was carburized with activated carbon with a carbon potential ...
-
Article dans une revue avec comité de lectureSCHEUER, Adrien; GRÉGOIRE, Guillaume; KEUNINGS, Roland; ABISSET-CHAVANNE, Emmanuelle; CHINESTA SORIA, Francisco (ELSEVIER, 2020)Simulations of flows containing non-spherical particles (fibres or ellipsoids) rely on the knowledge of the equation governing the particle motion in the flow. Most models used nowadays are based on the pioneering work of ...
-
Article dans une revue avec comité de lectureMONTÁNS, Francisco J.; CHINESTA SORIA, Francisco; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan (Elsevier Masson, 2019)In the past, data in which science and engineering is based, was scarce and frequently obtained by experiments proposed to verify a given hypothesis. Each experiment was able to yield only very limited data. Today, data ...
-
Article dans une revue avec comité de lectureAMORES, Víctor J.; MONTÁNS, Francisco J.; CUETO, Elías; CHINESTA SORIA, Francisco (Frontiers Media SA, 2022-05)We propose an efficient method to determine the micro-structural entropic behavior of polymer chains directly from a sufficiently rich non-homogeneous experiment at the continuum scale. The procedure is developed in 2 ...