Finite Element Simulation of Sheet Metal Forming Processes using Non-Quadratic Anisotropic Plasticity Models and SolidShell Finite Elements
Communication avec acte
Date
2020Abstract
During the last decades, a family of assumed-strain solid-shell finite elements has been developed with enriched benefits of solid and shell finite elements together with special treatments to avoid locking phenomena. These elements have been shown to be efficient in numerical simulation of thin 3D structures with various constitutive models. The current contribution consists in the combination of the developed linear and quadratic solid-shell elements with complex anisotropic plasticity models for aluminum alloys. Conventional quadratic anisotropic yield functions are associated with less accuracy in the simulation of forming processes with metallic materials involving strong anisotropy. For these materials, the plastic anisotropy can be modeled more accurately using advanced non-quadratic yield functions, such as the anisotropic yield criteria proposed by Barlat for aluminum alloys. In this work, various quadratic and non-quadratic anisotropic yield functions are combined with a linear eight-node hexahedral solid-shell element and a linear six-node prismatic solid-shell element, and their quadratic counterparts. The resulting solid-shell elements are implemented into the ABAQUS software for the simulation of benchmark deep drawing process of a cylindrical cup. The predicted results are assessed and compared to experimental ones taken from the literature. Compared to the use of conventional quadratic anisotropic yield functions, the results given by the combination of the developed solid-shell elements with non-quadratic anisotropic yield functions show good agreement with experiments.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureBOUKTIR, Yasser; CHALAL, Hocine; HADDAD, Moussa; ABED-MERAIM, Farid (Elsevier, 2016)The ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum ...
-
Communication avec acteCHALAL, Hocine; SALAHOUELHADJ, Abdellah; ABED-MERAIM, Farid (Wiley, 2012)In this paper, the performance of the solid-shell finite element SHB8PS is assessed in the context of sheet metal forming simulation using anisotropic elastic-plastic behavior models. This finite element technology has ...
-
Quadratic solid‒shell elements for nonlinear structural analysis and sheet metal forming simulation Article dans une revue avec comité de lectureWANG, Peng; CHALAL, Hocine; ABED-MERAIM, Farid (Springer Verlag, 2017)In this paper, two quadratic solid‒shell (SHB) elements are proposed for the three-dimensional modeling of thin structures. These consist of a twenty-node hexahedral solid‒shell element, denoted SHB20, and its fifteen-node ...
-
Article dans une revue avec comité de lectureWANG, Peng; CHALAL, Hocine; ABED-MERAIM, Farid (Univerza v Ljubljani Fakulteta za strojništvo, 2017)A family of prismatic and hexahedral solid–shell (SHB) elements, with their linear and quadratic versions, is proposed in this work to model thin structures. The formulation of these SHB elements is extended to explicit ...
-
Article dans une revue avec comité de lectureCHALAL, Hocine; ABED-MERAIM, Farid (MDPI, 2018)In the current contribution, prismatic and hexahedral quadratic solid–shell (SHB) finite elements are proposed for the geometrically nonlinear analysis of thin structures made of functionally graded material (FGM). The ...