Effect of hardening and damage parameters on the prediction of localized necking in thin sheet metals
Communication avec acte
Date
2016Résumé
In this work, an elastic–plastic model with Hill’48 anisotropic yield surface is coupled with the continuum damage mechanics theory and combined with the bifurcation analysis, in order to predict strain localization in thin sheet metals. The resulting approach is implemented into the ABAQUS finite element code within the framework of large strains and plane-stress conditions. A sensitivity analysis with respect to hardening and damage parameters is carried out to identify the most influential parameters on strain localization predictions.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThe ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum ...
-
Article dans une revue avec comité de lectureIn this paper, the conditions for the occurrence of diffuse and localized necking in thin sheet metals are investigated. The prediction of these necking phenomena is undertaken using an elastic‒plastic model coupled with ...
-
Communication avec actePlastic instabilities such as diffuse or localized necking may occur during sheet metal forming processes, thus limiting sheet metal formability, which is detrimental to industry. The formability of sheet metals is usually ...
-
Article dans une revue avec comité de lectureThin structures are commonly designed and employedin engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural ...
-
Article dans une revue avec comité de lectureIn this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...