• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of Concentrated Short Fiber Suspensions in Flows, Using Topological Data Analysis

Article dans une revue avec comité de lecture
Author
MEZHER, Rabih
1053863 College of Engineering and Technology, American University of the Middle East, Kuwait
ARAYRO, Jack
1053863 College of Engineering and Technology, American University of the Middle East, Kuwait
HASCOET, Nicolas
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
CHINESTA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/21055
DOI
10.3390/e23091229
Date
2021
Journal
Entropy

Abstract

The present study addresses the discrete simulation of the flow of concentrated suspensions encountered in the forming processes involving reinforced polymers, and more particularly the statistical characterization and description of the effects of the intense fiber interaction, occurring during the development of the flow induced orientation, on the fibers’ geometrical center trajectory. The number of interactions as well as the interaction intensity will depend on the fiber volume fraction and the applied shear, which should affect the stochastic trajectory. Topological data analysis (TDA) will be applied on the geometrical center trajectories of the simulated fiber to prove that a characteristic pattern can be extracted depending on the flow conditions (concentration and shear rate). This work proves that TDA allows capturing and extracting from the so-called persistence image, a pattern that characterizes the dependence of the fiber trajectory on the flow kinematics and the suspension concentration. Such a pattern could be used for classification and modeling purposes, in rheology or during processing monitoring.

Files in this item

Name:
PIMM_ENTROPY_MEZHER_2021_OPENACCESS
Size:
874.6Kb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • On the data-driven modeling of reactive extrusion 
    Article dans une revue avec comité de lecture
    IBAÑEZ, Ruben; CASTERAN, Fanny; ARGERICH, Clara; GHNATIOS, Chady; HASCOET, Nicolas; AMMAR, Amine; CASSAGNAU, Philippe; CHINESTA, Francisco (MDPI, 2020)
    This paper analyzes the ability of different machine learning techniques, able to operate in the low-data limit, for constructing the model linking material and process parameters with the properties and performances of ...
  • Learning data-driven reduced elastic and inelastic models of spot-welded patches 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; CHAMPANEY, Victor; DAIM, Fatima; TOURBIER, Yves; HASCOET, Nicolas; GONZALEZ, David; CUETO, Elias; DUVAL, Jean Louis; CHINESTA, Francisco (EDP Sciences, 2021)
    Solving mechanical problems in large structures with rich localized behaviors remains a challenging issue despite the enormous advances in numerical procedures and computational performance. In particular, these localized ...
  • Learning the Parametric Transfer Function of Unitary Operations for Real-Time Evaluation of Manufacturing Processes Involving Operations Sequencing 
    Article dans une revue avec comité de lecture
    LOREAU, Tanguy; CHAMPANEY, Victor; HASCOËT, Nicolas; MOURGUE, Philippe; DUVAL, Jean-Louis; CHINESTA, Francisco (MDPI AG, 2021)
    For better designing manufacturing processes, surrogate models were widely considered in the past, where the effect of different material and process parameters was considered from the use of a parametric solution. The ...
  • Incremental dynamic mode decomposition: A reduced-model learner operating at the low-data limit 
    Article dans une revue avec comité de lecture
    REILLE, Agathe; HASCOET, Nicolas; GHNATIOS, Chady; AMMAR, Amine; CUETO, Elias; DUVAL, Jean-Louis; CHINESTA, Francisco; KEUNINGS, Roland (Elsevier Masson, 2019)
    The present work aims at proposing a new methodology for learning reduced models from a small amount of data. It is based on the fact that discrete models, or their transfer function counterparts, have a low rank and then ...
  • Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework 
    Article dans une revue avec comité de lecture
    MONTÉS, Nicolas; CHINESTA, Francisco; MORA, Marta C.; FALCÓ, Antonio; HILARIO, Lucia; ROSILLO, Nuria; NADAL, Enrique (MDPI AG, 2021)
    This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales