• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework

Article dans une revue avec comité de lecture
Auteur
DOT, Gauthier
SCHOUMAN, Thomas
DUBOIS, Guillaume
ccROUCH, Philippe
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ccGAJNY, Laurent

URI
http://hdl.handle.net/10985/21461
DOI
10.1007/s00330-021-08455-y
Date
2022
Journal
European Radiology

Résumé

Objectives To evaluate the performance of the nnU-Net open-source deep learning framework for automatic multi-task segmentation of craniomaxillofacial (CMF) structures in CT scans obtained for computer-assisted orthognathic surgery. Methods Four hundred and fifty-three consecutive patients having undergone high-resolution CT scans before orthognathic surgery were randomly distributed among a training/validation cohort (n = 300) and a testing cohort (n = 153). The ground truth segmentations were generated by 2 operators following an industry-certified procedure for use in computer-assisted surgical planning and personalized implant manufacturing. Model performance was assessed by comparing model predictions with ground truth segmentations. Examination of 45 CT scans by an industry expert provided additional evaluation. The model’s generalizability was tested on a publicly available dataset of 10 CT scans with ground truth segmentation of the mandible. Results In the test cohort, mean volumetric Dice similarity coefficient (vDSC) and surface Dice similarity coefficient at 1 mm (sDSC) were 0.96 and 0.97 for the upper skull, 0.94 and 0.98 for the mandible, 0.95 and 0.99 for the upper teeth, 0.94 and 0.99 for the lower teeth, and 0.82 and 0.98 for the mandibular canal. Industry expert segmentation approval rates were 93% for the mandible, 89% for the mandibular canal, 82% for the upper skull, 69% for the upper teeth, and 58% for the lower teeth. Conclusion While additional efforts are required for the segmentation of dental apices, our results demonstrated the model’s reliability in terms of fully automatic segmentation of preoperative orthognathic CT scans.

Fichier(s) constituant cette publication

Nom:
IBHGC_EURA_2022_DOT.pdf
Taille:
1.309Mo
Format:
PDF
Fin d'embargo:
2022-07-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; CHAURASIA, Akhilanand; DUBOIS, Guillaume; SAVOLDELLI, Charles; HAGHIGHAT, Sara; AZIMIAN, Sarina; ccRAHBAR TARAMSARI, Ali; SIVARAMAKRISHNAN, Gowri; ISSA, Julien; DUBEY, Abhishek; SCHOUMAN, Thomas; ccGAJNY, Laurent (2024-06)
    Objectives: Segmentation of anatomical structures on dento-maxillo-facial (DMF) computed tomography (CT) or cone beam computed tomography (CBCT) scans is increasingly needed in digital dentistry. The main aim of this ...
  • Accuracy and reliability of automatic three-dimensional cephalometric landmarking 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; RAFFLENBEUL, Frédéric; ARBOTTO, M.; SCHOUMAN, Thomas; ccROUCH, Philippe; ccGAJNY, Laurent (Elsevier, 2020)
    The aim of this systematic review was to assess the accuracy and reliability of automatic landmarking for cephalometric analysis of three-dimensional craniofacial images. We searched for studies that reported results of ...
  • Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; RAFFLENBEUL, Frédéric; KERBRAT, Adeline; SCHOUMAN, Thomas; ccROUCH, Philippe; ccGAJNY, Laurent (MDP, 2021)
    In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment ...
  • Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; SCHOUMAN, Thomas; CHANG, Shaole; RAFFLENBEUL, Frédéric; KERBRAT, Adeline; ccROUCH, Philippe; ccGAJNY, Laurent (SAGE Publications, 2022-08-18)
    The increasing use of 3-dimensional (3D) imaging by orthodontists and maxillofacial surgeons to assess complex dentofacial deformities and plan orthognathic surgeries implies a critical need for 3D cephalometric analysis. ...
  • Influence of the overall stiffness of a load-bearing porous titanium implant on bone ingrowth in critical-size mandibular bone defects in sheep. 
    Article dans une revue avec comité de lecture
    SCHOUMAN, Thomas; SCHMITT, Mary; ADAM, Clayton; DUBOIS, Guillaume; ccROUCH, Philippe (Elsevier, 2016)
    The aim of this work was to assess the influence of reduction of the apparent mechanical properties of fully load-bearing porous titanium implants used in mandibular bone defects. Segmental 18mm long bone defects were ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales