Numerical investigation of the time-dependent stress–strain mechanical behaviour of skeletal muscle tissue in the context of pressure ulcer prevention
Article dans une revue avec comité de lecture
Author

1002421 Institut de Mécanique et d'Ingénierie [I2M]
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
Date
2022Journal
Clinical BiomechanicsAbstract
Background Pressure-induced tissue strain is one major pathway for Pressure Ulcer development and, especially, Deep Tissue Injury. Biomechanical investigation of the time-dependent stress–strain mechanical behaviour of skeletal muscle tissue is therefore essential. In the literature, a viscoelastic formulation is generally assumed for the experimental characterization of skeletal muscles, with the limitation that the underlying physical mechanisms that give rise to the time dependent stress–strain behaviour are not known. The objective of this study is to explore the capability of poroelasticity to reproduce the apparent viscoelastic behaviour of passive muscle tissue under confined compression. Methods Experimental stress-relaxation response of 31 cylindrical porcine samples tested under fast and slow confined compression by Vaidya and collaborators were used. An axisymmetric Finite Element model was developed in ABAQUS and, for each sample a one-to-one inverse analysis was performed to calibrate the specimen-specific constitutive parameters, namely, the drained Young's modulus, the void ratio, hydraulic permeability, the Poisson's ratio, the solid grain's and fluid's bulk moduli. Findings The peak stress and consolidation were recovered for most of the samples (N = 25) by the poroelastic model (normalised root-mean-square error ≤0.03 for fast and slow confined compression conditions). Interpretation The strength of the proposed model is its fewer number of variables (N = 6 for the proposed poroelastic model versus N = 18 for the viscohyperelastic model proposed by Vaidya and collaborators). The incorporation of poroelasticity to clinical models of Pessure Ulcer formation could lead to more precise and mechanistic explorations of soft tissue injury risk factors.
Files in this item
- Name:
- IBHGC_CB_LAVIGNE_2022.pdf
- Size:
- 32.54Mb
- Format:
- Description:
- Article principal
- Embargoed until:
- 2022-08-01
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureURCUN, Stéphane; ROHAN, Pierre-Yves; SKALLI, Wafa; NASSOY, Pierre; BORDAS, Stéphane P. A.; SCIUMÈ, Giuseppe (Public Library of Science (PLoS), 2021)Spheroids encapsulated within alginate capsules are emerging as suitable in vitro tools to investigate the impact of mechanical forces on tumor growth since the internal tumor pressure can be retrieved from the deformation ...
-
Article dans une revue avec comité de lectureURCUN, Stéphane; ROHAN, Pierre-Yves; SCIUMÈ, Giuseppe; BORDAS, Stéphane P.A. (Elsevier BV, 2021)This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle ...
-
Article dans une revue avec comité de lectureURCUN, Stéphane; ROHAN, Pierre-Yves; SCIUMÈ, Giuseppe; BORDAS, Stéphane P.A. (Elsevier BV, 2021)This paper investigates the complex time-dependent behavior of cortex tissue, under adiabatic condition, using a two-phase flow poroelastic model. Motivated by experiments and Biot’s consolidation theory, we tackle ...
-
Spine Chapitre d'ouvrage scientifiqueLAPORTE, Sébastien; VAN DEN ABBEELE, Maxim; ROHAN, Pierre-Yves; ADAM, Clayton; ROUCH, Philippe; SKALLI, Wafa (Elsevier, 2017)Clinical problems of the human spine have a high prevalence, affecting more than 25.5 million people in 2012. Older adults, in particular, are susceptible to degenerative spine disorders such as deformities or osteoporosis. ...
-
Article dans une revue avec comité de lectureMACRON, Aurélien; PILLET, Hélène; DORIDAM, Jennifer; RIVALS, Isabelle; SADEGHINIA, Mohammad Javad; VERNEY, Alexandre; ROHAN, Pierre-Yves (Elsevier, 2020)Internal soft tissue strains have been shown to be one of the main factors responsible for the onset of Pressure Ulcers and to be representative of its risk of development. However, the estimation of this parameter using ...