• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Allying topology and shape optimization through machine learning algorithms

Article dans une revue avec comité de lecture
Author
MUÑOZ, D.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
NADAL, E.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ALBELDA, J.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
RÓDENAS, J.J.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]

URI
http://hdl.handle.net/10985/22239
DOI
10.1016/j.finel.2021.103719
Date
2022-07
Journal
Finite Elements in Analysis and Design

Abstract

Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of displacements. The most relevant techniques are topology and shape optimization. Topology optimization provides the optimal material distribution layout into a given, static, design domain. On the other hand, shape optimization provides the optimal combination of the parameters that define the required parametrization of the domain's boundary. Both techniques have strengths and weaknesses, thus a hybrid optimization approach that combines the former techniques will define a more general structural optimization framework that will take advantage of their synergistic combination. The difficulty arises when communicating both techniques for which, in this paper, we propose a machine learning-based methodology.

Files in this item

Name:
PIMM_FEAD_2022_MUNOZ
Size:
14.28Mb
Format:
PDF
Embargoed until:
2023-01-01
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Proper generalized decomposition solutions within a domain decomposition strategy 
    Article dans une revue avec comité de lecture
    HUERTA, Antonio; NADAL, Enrique; ccCHINESTA SORIA, Francisco (Wiley, 2018)
    Domain decomposition strategies and proper generalized decomposition are efficiently combined to obtain a fast evaluation of the solution approximation in parameterized elliptic problems with complex geometries. The classical ...
  • On the physical interpretation of fractional diffusion 
    Article dans une revue avec comité de lecture
    NADAL, Enrique; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    Even if the diffusion equation has been widely used in physics and engineering, and its physical content is well understood, some variants of it escape fully physical understanding. In particular, anormal diffusion appears ...
  • Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework 
    Article dans une revue avec comité de lecture
    MONTÉS, Nicolas; ccCHINESTA SORIA, Francisco; MORA, Marta C.; FALCÓ, Antonio; HILARIO, Lucia; ROSILLO, Nuria; NADAL, Enrique (MDPI AG, 2021)
    This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property ...
  • Complex Algorithms for Data-Driven Model Learning in Science and Engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco J.; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan; ccCHINESTA SORIA, Francisco (Hindawi Limited, 2019)
    no abstract
  • Data-driven modeling and learning in science and engineering 
    Article dans une revue avec comité de lecture
    MONTÁNS, Francisco J.; ccCHINESTA SORIA, Francisco; GÓMEZ-BOMBARELLI, Rafael; KUTZ, J. Nathan (Elsevier Masson, 2019)
    In the past, data in which science and engineering is based, was scarce and frequently obtained by experiments proposed to verify a given hypothesis. Each experiment was able to yield only very limited data. Today, data ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales