• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Allying topology and shape optimization through machine learning algorithms

Article dans une revue avec comité de lecture
Author
MUÑOZ, D.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
NADAL, E.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ALBELDA, J.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
RÓDENAS, J.J.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]

URI
http://hdl.handle.net/10985/22239
DOI
10.1016/j.finel.2021.103719
Date
2022-07
Journal
Finite Elements in Analysis and Design

Abstract

Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of displacements. The most relevant techniques are topology and shape optimization. Topology optimization provides the optimal material distribution layout into a given, static, design domain. On the other hand, shape optimization provides the optimal combination of the parameters that define the required parametrization of the domain's boundary. Both techniques have strengths and weaknesses, thus a hybrid optimization approach that combines the former techniques will define a more general structural optimization framework that will take advantage of their synergistic combination. The difficulty arises when communicating both techniques for which, in this paper, we propose a machine learning-based methodology.

Files in this item

Name:
PIMM_FEAD_2022_MUNOZ
Size:
14.28Mb
Format:
PDF
Embargoed until:
2023-01-01
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Manifold learning for coherent design interpolation based on geometrical and topological descriptors 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccALLIX, Olivier; ccCHINESTA SORIA, Francisco; ccRÓDENAS, Juan José (2023)
    In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules ...
  • Empowering PGD-based parametric analysis with Optimal Transport 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTORREGROSA JORDAN, Sergio; ALLIX, Olivier; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-01)
    The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework that has been proposed to be able to do parametric analysis of physical problems. These parameters may include material properties, boundary ...
  • Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTHOMAS, Anoop Ebey; ccCOTTON, Julien; BERTRAND, Johan; ccCHINESTA SORIA, Francisco (MDPI AG, 2024-07)
    Monitoring a deep geological repository for radioactive waste during the operational phases relies on a combination of fit-for-purpose numerical simulations and online sensor measurements, both producing complementary ...
  • On the physical interpretation of fractional diffusion 
    Article dans une revue avec comité de lecture
    NADAL, Enrique; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    Even if the diffusion equation has been widely used in physics and engineering, and its physical content is well understood, some variants of it escape fully physical understanding. In particular, anormal diffusion appears ...
  • Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework 
    Article dans une revue avec comité de lecture
    MONTÉS, Nicolas; ccCHINESTA SORIA, Francisco; MORA, Marta C.; FALCÓ, Antonio; HILARIO, Lucia; ROSILLO, Nuria; NADAL, Enrique (MDPI AG, 2021)
    This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales