• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Manifold learning for coherent design interpolation based on geometrical and topological descriptors

Article dans une revue avec comité de lecture
Author
ccMUNOZ, David
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccALLIX, Olivier
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÓDENAS, Juan José

URI
http://hdl.handle.net/10985/24632
DOI
10.1016/j.cma.2022.115859
Date
2023
Journal
Computer Methods in Applied Mechanics and Engineering

Abstract

In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules or steps as it remains in the intuition and expertise of engineers, designers, and other professionals. Today, a new research line in this concern spot-up thanks to the explosion of Artificial Intelligence and Machine Learning algorithms and its alliance with Computational Mechanics and Optimisation tools. However, a key aspect with industrial design is the scarcity of available data, making it problematic to rely on deep-learning approaches. Assuming that the existing designs live in a manifold, in this paper, we propose a synergistic use of existing Machine Learning tools to infer a reduced manifold from the existing limited set of designs and, then, to use it to interpolate between the individuals, working as a generator basis, to create new and coherent designs. For this, a key aspect is to be able to properly interpolate in the reduced manifold, which requires a proper clustering of the individuals. From our experience, due to the scarcity of data, adding topological descriptors to geometrical ones considerably improves the quality of the clustering. Thus, a distance, mixing topology and geometry is proposed. This distance is used both, for the clustering and for the interpolation. For the interpolation, relying on optimal transport appear to be mandatory. Examples of growing complexity are proposed to illustrate the goodness of the method.

Files in this item

Name:
PIMM_CMAME_Chinesta-2023.pdf
Size:
4.271Mb
Format:
PDF
View/Open

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Empowering PGD-based parametric analysis with Optimal Transport 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTORREGROSA JORDAN, Sergio; ALLIX, Olivier; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-01)
    The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework that has been proposed to be able to do parametric analysis of physical problems. These parameters may include material properties, boundary ...
  • Book of abstracts - 14th WCCM & ECCOMAS Congress 2020 
    Ouvrage scientifique
    ccCHINESTA SORIA, Francisco; ABGRALL, Rémi; ALLIX, Olivier; NÉRON, David; KALISKE, Michael (International Centre for Numerical Methods in Engineering (CIMNE), 2021)
    No abstract
  • Allying topology and shape optimization through machine learning algorithms 
    Article dans une revue avec comité de lecture
    MUÑOZ, D.; NADAL, E.; ALBELDA, J.; ccCHINESTA SORIA, Francisco; RÓDENAS, J.J. (Elsevier BV, 2022-07)
    Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of ...
  • Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTHOMAS, Anoop Ebey; ccCOTTON, Julien; BERTRAND, Johan; ccCHINESTA SORIA, Francisco (MDPI AG, 2024-07)
    Monitoring a deep geological repository for radioactive waste during the operational phases relies on a combination of fit-for-purpose numerical simulations and online sensor measurements, both producing complementary ...
  • PGD-Based Computational Vademecum for Efficient Design, Optimization and Control 
    Article dans une revue avec comité de lecture
    ccCHINESTA SORIA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; ccCUETO, Elias; GONZALEZ, David; ALFARO, Icíar; ccAMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)
    In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales