• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting

Article dans une revue avec comité de lecture
Author
ccMUNOZ, David
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccTHOMAS, Anoop Ebey
564849 ESI Group [ESI Group]
ccCOTTON, Julien
12854 Agence Nationale pour la Gestion des Déchets Radioactifs [ANDRA]
BERTRAND, Johan
12854 Agence Nationale pour la Gestion des Déchets Radioactifs [ANDRA]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/25868
DOI
10.3390/s24154931
Date
2024-07
Journal
Sensors

Abstract

Monitoring a deep geological repository for radioactive waste during the operational phases relies on a combination of fit-for-purpose numerical simulations and online sensor measurements, both producing complementary massive data, which can then be compared to predict reliable and integrated information (e.g., in a digital twin) reflecting the actual physical evolution of the installation over the long term (i.e., a century), the ultimate objective being to assess that the repository components/processes are effectively following the expected trajectory towards the closure phase. Data prediction involves using historical data and statistical methods to forecast future outcomes, but it faces challenges such as data quality issues, the complexity of real-world data, and the difficulty in balancing model complexity. Feature selection, overfitting, and the interpretability of complex models further contribute to the complexity. Data reconciliation involves aligning model with in situ data, but a major challenge is to create models capturing all the complexity of the real world, encompassing dynamic variables, as well as the residual and complex near-field effects on measurements (e.g., sensors coupling). This difficulty can result in residual discrepancies between simulated and real data, highlighting the challenge of accurately estimating real-world intricacies within predictive models during the reconciliation process. The paper delves into these challenges for complex and instrumented systems (multi-scale, multi-physics, and multi-media), discussing practical applications of machine and deep learning methods in the case study of thermal loading monitoring of a high-level waste (HLW) cell demonstrator (called ALC1605) implemented at Andra’s underground research laboratory.

Files in this item

Name:
PIMM_S_2024_MUNOZ.pdf
Size:
27.02Mb
Format:
PDF
Description:
Estimating Network Lifetime of ...
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Manifold learning for coherent design interpolation based on geometrical and topological descriptors 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccALLIX, Olivier; ccCHINESTA SORIA, Francisco; ccRÓDENAS, Juan José (2023)
    In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules ...
  • Empowering PGD-based parametric analysis with Optimal Transport 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTORREGROSA JORDAN, Sergio; ALLIX, Olivier; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-01)
    The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework that has been proposed to be able to do parametric analysis of physical problems. These parameters may include material properties, boundary ...
  • Assessing Sensor Integrity for Nuclear Waste Monitoring Using Graph Neural Networks 
    Article dans une revue avec comité de lecture
    ccHEMBERT, Pierre; ccGHNATIOS, Chady; COTTON, Julien; ccCHINESTA SORIA, Francisco (MDPI AG, 2024-02)
    A deep geological repository for radioactive waste, such as Andra’s Cigéo project, requires long-term (persistent) monitoring. To achieve this goal, data from a network of sensors are acquired. This network is subject to ...
  • Allying topology and shape optimization through machine learning algorithms 
    Article dans une revue avec comité de lecture
    MUÑOZ, D.; NADAL, E.; ALBELDA, J.; ccCHINESTA SORIA, Francisco; RÓDENAS, J.J. (Elsevier BV, 2022-07)
    Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of ...
  • Shrinkage porosity prediction empowered by physics-based and data-driven hybrid models 
    Article dans une revue avec comité de lecture
    ccNOURI, Madyen; ccARTOZOUL, Julien; CAILLAUD, Aude; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; KÖSER, Ole (Springer Science and Business Media LLC, 2022-03-25)
    Several defects might affect a casting part and degrade its quality and the process efficiency. Porosity formation is one of the major defects that can appear in the resulting product. Thus, several research studies aimed ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales