• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Allying topology and shape optimization through machine learning algorithms

Article dans une revue avec comité de lecture
Auteur
MUÑOZ, D.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
NADAL, E.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ALBELDA, J.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
RÓDENAS, J.J.
300772 Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia [UPV]

URI
http://hdl.handle.net/10985/22239
DOI
10.1016/j.finel.2021.103719
Date
2022-07
Journal
Finite Elements in Analysis and Design

Résumé

Structural optimization is part of the mechanical engineering field and, in most cases, tries to minimize the overall weight of a given design domain, subjected to functionality constraints given in terms of stresses of displacements. The most relevant techniques are topology and shape optimization. Topology optimization provides the optimal material distribution layout into a given, static, design domain. On the other hand, shape optimization provides the optimal combination of the parameters that define the required parametrization of the domain's boundary. Both techniques have strengths and weaknesses, thus a hybrid optimization approach that combines the former techniques will define a more general structural optimization framework that will take advantage of their synergistic combination. The difficulty arises when communicating both techniques for which, in this paper, we propose a machine learning-based methodology.

Fichier(s) constituant cette publication

Nom:
PIMM_FEAD_2022_MUNOZ
Taille:
14.28Mo
Format:
PDF
Fin d'embargo:
2023-01-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Hybrid Twins Modeling of a High-Level Radioactive Waste Cell Demonstrator for Long-Term Temperature Monitoring and Forecasting 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTHOMAS, Anoop Ebey; ccCOTTON, Julien; BERTRAND, Johan; ccCHINESTA SORIA, Francisco (MDPI AG, 2024-07)
    Monitoring a deep geological repository for radioactive waste during the operational phases relies on a combination of fit-for-purpose numerical simulations and online sensor measurements, both producing complementary ...
  • Manifold learning for coherent design interpolation based on geometrical and topological descriptors 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccALLIX, Olivier; ccCHINESTA SORIA, Francisco; ccRÓDENAS, Juan José (2023)
    In the context of intellectual property in the manufacturing industry, know-how is referred to practical knowledge on how to accomplish a specific task. This know-how is often difficult to be synthesised in a set of rules ...
  • Empowering PGD-based parametric analysis with Optimal Transport 
    Article dans une revue avec comité de lecture
    ccMUNOZ, David; ccTORREGROSA JORDAN, Sergio; ALLIX, Olivier; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-01)
    The Proper Generalized Decomposition (PGD) is a Model Order Reduction framework that has been proposed to be able to do parametric analysis of physical problems. These parameters may include material properties, boundary ...
  • On the physical interpretation of fractional diffusion 
    Article dans une revue avec comité de lecture
    NADAL, Enrique; ccCUETO, Elias; ccABISSET-CHAVANNE, Emmanuelle; ccCHINESTA SORIA, Francisco (Elsevier Masson, 2018)
    Even if the diffusion equation has been widely used in physics and engineering, and its physical content is well understood, some variants of it escape fully physical understanding. In particular, anormal diffusion appears ...
  • Real-Time Path Planning Based on Harmonic Functions under a Proper Generalized Decomposition-Based Framework 
    Article dans une revue avec comité de lecture
    MONTÉS, Nicolas; ccCHINESTA SORIA, Francisco; MORA, Marta C.; FALCÓ, Antonio; HILARIO, Lucia; ROSILLO, Nuria; NADAL, Enrique (MDPI AG, 2021)
    This paper presents a real-time global path planning method for mobile robots using harmonic functions, such as the Poisson equation, based on the Proper Generalized Decomposition (PGD) of these functions. The main property ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales