• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques

Article dans une revue avec comité de lecture
Author
ccTOUZÉ, Cyril
563936 Institut Polytechnique de Paris [IP Paris]
300065 École Nationale Supérieure de Techniques Avancées [ENSTA Paris]
421305 Institut des Sciences de la Mécanique et Applications Industrielles [IMSIA]
VIZZACCARO, Alessandra
220393 University of Bristol [Bristol]
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/22642
DOI
10.1007/s11071-021-06693-9
Date
2021-07
Journal
Nonlinear Dynamics

Abstract

This paper aims at reviewing nonlinear methods for model order reduction in structures with geometric nonlinearity, with a special emphasis on the techniques based on invariant manifold theory. Nonlinear methods differ from linear-based techniques by their use of a nonlinear mapping instead of adding new vectors to enlarge the projection basis. Invariant manifolds have been first introduced in vibration theory within the context of nonlinear normal modes and have been initially computed from the modal basis, using either a graph representation or a normal form approach to compute mappings and reduced dynamics. These developments are first recalled following a historical perspective, where the main applications were first oriented toward structural models that can be expressed thanks to partial differential equations. They are then replaced in the more general context of the parametrisation of invariant manifold that allows unifying the approaches. Then, the specific case of structures discretised with the finite element method is addressed. Implicit condensation, giving rise to a projection onto a stress manifold, and modal derivatives, used in the framework of the quadratic manifold, are first reviewed. Finally, recent developments allowing direct computation of reduced-order models relying on invariant manifolds theory are detailed. Applicative examples are shown and the extension of the methods to deal with further complications are reviewed. Finally, open problems and future directions are highlighted.

Files in this item

Name:
LISPEN_ND_2021_THOMAS.pdf
Size:
2.075Mb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Conservative Numerical Methods for the Full von Kármán Plate Equations 
    Article dans une revue avec comité de lecture
    BILBAO, Stefan; ccTHOMAS, Olivier; ccTOUZÉ, Cyril; DUCCESCHI, Michele (Wiley, 2015)
    This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary ...
  • Identification of mode couplings in nonlinear vibrations of the steelpan 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTHOMAS, Olivier; ccTOUZÉ, Cyril (Elsevier, 2015)
    The vibrations and sounds produced by two notes of a double second steelpan are investigated, the main objective being to quantify the nonlinear energy exchanges occurring between vibration modes that are responsible of ...
  • An upper bound for validity limits of asymptotic analytical approaches based on normal form theory 
    Article dans une revue avec comité de lecture
    LAMARQUE, Claude-Henri; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (Springer Verlag, 2012)
    Perturbation methods are routinely used in all fields of applied mathematics where analytical solutions for nonlinear dynamical systems are searched. Among them, normal form theory provides a reliable method for systematically ...
  • Nonlinear vibrations of steelpans: analysis of mode coupling in view of modal sound synthesis. 
    Communication avec acte
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (2013)
    Steelpans are musical percussions made from steel barrels. During the manufacturing, the metal is stretched and bended, to produce a set of thin shells that are the differents notes of the instrument. In normal playing, ...
  • Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccBENACCHIO, Simon (Springer Verlag, 2014)
    This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second order internal resonances resulting from a harmonic tuning of their natural ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales