• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect

Article dans une revue avec comité de lecture
Auteur
SHAMI, Zein Alabidin
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccSHEN, Yichang
421305 Institut des Sciences de la Mécanique et Applications Industrielles [IMSIA]
ccTOUZÉ, Cyril
421305 Institut des Sciences de la Mécanique et Applications Industrielles [IMSIA]
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccGIRAUD-AUDINE, Christophe
13338 Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 [L2EP]

URI
http://hdl.handle.net/10985/22697
DOI
10.1007/s11012-022-01566-w
Date
2022-08
Journal
Meccanica

Résumé

This article considers the nonlinear dynamics of coupled oscillators featuring strong coupling in 1:2 internal resonance. In forced oscillations, this particular interaction is the source of energy exchange, leading to a particular shape of the response curves, as well as quasi-periodic responses and a saturation phenomenon. These main features are embedded in the simplest system which considers only the two resonant quadratic monomials conveying the 1:2 internal resonance, since they are the proeminent source allowing one to explain these phenomena. However, it has been shown recently that those features can be substantially modified by the presence of non-resonant quadratic terms. The aim of the present study is thus to explain the effect of the non-resonant quadratic terms on the dynamics. To that purpose, the normal form up to the third order is used, since the effect of the non-resonant quadratic terms will be transferred into the resonant cubic terms. Analytical solutions are detailed using a second-order mutliple scale expansion. A thorough investigation of the backbone curves, their stability and bifurcation, and the link to the forced–damped solutions, is detailed, showing in particular interesting features that had not been addressed in earlier studies. Finally, the saturation effect is investigated, and it is shown how to correct the detuning effect of the cubic terms thanks to a specific tuning of non-resonant quadratic terms and resonant cubic terms. This choice, derived analytically, is shown to extend the validity of the saturation effect to larger amplitudes, which can thus be used in all applications where this effect is needed e.g. for control.

Fichier(s) constituant cette publication

Nom:
LISPEN_MECC_2022_THOMAS.pdf
Taille:
4.296Mo
Format:
PDF
Fin d'embargo:
2023-02-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d'Electrotechnique et d'Electronique de Puissance (L2EP) de Lille
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • A new electrical circuit with negative capacitances to enhance resistive shunt damping 
    Communication avec acte
    BERARDENGO, Marta; MANZONI, Stefano; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (ASME, 2015)
    This article proposes a new layout of electrical network based on two negative capacitance circuits, aimed at increasing the performances of a traditional resistive piezoelectric shunt for structural vibration reduction. ...
  • Tunable electromagnetic resonant shunt using pulse-width modulation 
    Article dans une revue avec comité de lecture
    AULELEY, Michel; MAHE, Hervé; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (Elsevier BV, 2021)
    This article proposes a novel mean for tuning the natural frequency of an electromagnetic resonant shunt, using a pulse-width modulation (PWM) circuit. It is used to modulate the value of the capacitance of the shunt, and ...
  • Effect of dry friction on a parametrically excited nonlinear oscillator 
    Communication avec acte
    ccTHOMAS, Olivier; ccBENACCHIO, Simon; ccGIRAUD-AUDINE, Christophe (2022-07-17)
    This study proposes to investigate the effects of dry friction on the behaviour of a parametrically excited nonlinear oscillator using a pendulum as example. A harmonic balance method and time integration simulations are ...
  • Effect of dry friction on a parametric nonlinear oscillator 
    Article dans une revue avec comité de lecture
    ccBENACCHIO, Simon; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (Springer Science and Business Media LLC, 2022-02-02)
    Parametrically excited oscillators are used in several domains, in particular to improve the dynamical behaviour of systems like in the case of the parametric amplification or parametric energy harvesting. Although dry ...
  • The reduction of operational amplifier electrical outputs to improve piezoelectric shunts with negative capacitance 
    Article dans une revue avec comité de lecture
    BERARDENGO, Marta; MANZONI, Stefano; ccTHOMAS, Olivier; DRAGO, L.; MARELLI, Stefano; VANALI, Marcello; ccGIRAUD-AUDINE, Christophe (Elsevier BV, 2021-08)
    One way to enhance the performance of vibration control with piezoelectric shunt is to use a negative capacitance in the shunt circuit. This component is very effective and pro- vides good results in terms of attenuation ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales