• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Vers l’asservissement du pilotage en énergie d'une opération de forgeage : développement d'un métamodèle prédictif pour un jumeau numérique

Conférence invitée
Auteur
URIBE, David
ccBAUDOUIN, Cyrille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccDURAND, Camille

URI
http://hdl.handle.net/10985/22880
Date
2022

Résumé

In the aeronautical sector, because parts are mainly of large dimensions and in high performance materials, products are forged in small batches. Forming these complex parts requires energy-controlled production means, such as screw presses or, more generally, forging hammer. With these machines, several successive strokes are necessary to obtain the parts desired geometry and mechanical characteristics. However, for these small quantities, the automation of the manufacturing process is not necessarily possible or profitable and consequently, the control of the machine remains dependent on the know-how of the operators, in particular with regard to the quantity of energy to be delivered blow after blow, the temperature, the lubrication conditions, etc. The main challenge is to provide flexibility and robustness particularly adapted to small batches, thus limiting the impact of process parameters variability on the part final quality. To reach that goal, the implementation of a digital twin is proposed. The objective of the project is to develop a digital twin in the context of forming materials on an energy-controlled screw press. The scientific challenge is to obtain an accurate, predictive and reactive twin that will allow real-time control of the process as well as access to information that cannot be measured during the manufacturing process. A methodology for the creation of a predictive meta-model based on a calibrated numerical simulation and updated by machine learning is proposed. This meta-model will compose the digital twin. Our approach is validated on a case study: the uni-axial compression of a copper cylinder. Finally, the following development phases of the digital twin are presented.

Fichier(s) constituant cette publication

Nom:
LCFC_CFM2022_URIBE_2022.pdf
Taille:
1.190Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Conception Fabrication Commande (LCFC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccDURAND, Camille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2023-12)
    In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based ...
  • Accurate real-time modeling for multiple-blow forging 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2024-10)
    Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time ...
  • Enhancing metal-forming predictions with VR-infused digital twin models 
    Communication avec acte
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccLOCARD, Yoan; ccDURAND, Camille; ccBIGOT, Regis (Materials Research Forum LLC, 2024-05)
    This article presents a two-step method to enhance metal-forming predictions by integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper upsetting operations. The process begins with ...
  • Enhancing data representation in forging processes: Investigating discretization and R-adaptivity strategies with Proper Orthogonal Decomposition reduction 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Elsevier, 2024-12)
    Effective data reduction techniques are crucial for enhancing computational efficiency in complex industrial processes such as forging. In this study, we investigate various discretization and mesh adaptivity strategies ...
  • Développement d’un jumeau numérique pour le pilotage en énergie d’une opération de forgeage 
    Article dans une revue sans comité de lecture
    URIBE, David; KRUMPIPE, Pierre; ccBAUDOUIN, Cyrille; ccDURAND, Camille (CIFORGE, 2022-06)
    Depuis plusieurs années, les processus de fabrication sont progressivement automatisés pour améliorer leur répétabilité et leur reproductibilité. Parallèlement, des optimisations sont apportées afin d’améliorer la robustesse ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales