Real-time forging process control: integrating billet-related surrogate and machine behavior models
Article dans une revue avec comité de lecture
Author
Date
2025-04Journal
Journal of Intelligent ManufacturingAbstract
This study introduces a predictive surrogate model for real-time control in cold upsetting processes, incorporating both material and machine behaviors. Traditional approaches often simplify machine behavior as rigid or with constant stiffness; however, the proposed method dynamically couples material and machine responses, accounting for efficiency changes across different upsetting operations. This is achieved through the integration of a data-driven billet-related surrogate model with a machine-related analytical blow efficiency prediction, accurately capturing elastic energy losses. For the construction of the surrogate model in this use case, a multilayer perceptron artificial neural network (MLP ANN) was employed, demonstrating high predictive accuracy with a dataset comprising 2000 entries generated using Latin Hypercube Sampling (LHS) and numerical simulations. The model provides precise predictions for key outputs like forging load and plastic energy. Experimental validation shows prediction errors below 5% for energy setpoints, reduced to under 1% with blow efficiency correction. The general methodology of surrogate model creation can be adapted for various metal-forming processes, providing a versatile framework for real-time simulation and control.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lecture
URIBE, David;
BAUDOUIN, Cyrille;
DURAND, Camille;
BIGOT, Regis (Springer Science and Business Media LLC, 2023-12)
In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based ... -
Article dans une revue avec comité de lecture
URIBE, David;
DURAND, Camille;
BAUDOUIN, Cyrille;
BIGOT, Regis (Springer Science and Business Media LLC, 2024-10)
Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time ... -
Communication avec acte
URIBE, David;
BAUDOUIN, Cyrille;
LOCARD, Yoan;
DURAND, Camille;
BIGOT, Regis (Materials Research Forum LLC, 2024-05)
This article presents a two-step method to enhance metal-forming predictions by integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper upsetting operations. The process begins with ... -
Article dans une revue avec comité de lectureEffective data reduction techniques are crucial for enhancing computational efficiency in complex industrial processes such as forging. In this study, we investigate various discretization and mesh adaptivity strategies ...
-
Article dans une revue sans comité de lectureDans cet article, une approche en 4 étapes est proposée pour parvenir à une prédiction en temps réel des résultats d’opérations de forgeage. Tout d’abord, un modèle de substitution basé sur les données de simulations ...