• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • View Item
  • Home
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards the Real-Time Piloting of a Forging Process: Development of a Surrogate Model for a Multiple Blow Operation

Communication avec acte
Author
URIBE, David
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccDURAND, Camille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBAUDOUIN, Cyrille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
KRUMPIPE, Pierre
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBIGOT, Regis
107452 Laboratoire de Conception Fabrication Commande [LCFC]

URI
http://hdl.handle.net/10985/24547
DOI
10.1007/978-3-031-41341-4_39
Date
2023-08

Abstract

Forging processes are defined by variables related to the workpiece, the tools, the machine, and the process itself, and these variables are called process variables. They have a direct impact on the quality of the finished product, so it is important to accurately define them at the very beginning of the process design. Nowadays, the design stage is supported by numerical simulations, however, these simulations are made under ideal process conditions and do not consider the dynamics of the forging machine or the variabilities that may occur in production (e.g., variabilities in the dimensions of the billet). This suggests that among the different process variables, those defined for piloting the process (such as the blows energies, for example) are fixed under nominal conditions and are not calibrated for each part produced. This study exploits a methodology in four steps to create a surrogate model and implement it into a machine-behavior model for real-time piloting of a forging operation with a screw press. This model supports the piloting of the operation, providing a value for the energy setpoint, according to the current state of process variables, these being the input of the model. The methodology is detailed for a multiple-blow cold upsetting of a copper billet.

Files in this item

Name:
LCFC_SNS_2023_URIBE.pdf
Size:
1.585Mb
Format:
PDF
Embargoed until:
2024-03-01
View/Open

Collections

  • Laboratoire de Conception Fabrication Commande (LCFC)

Related items

Showing items related by title, author, creator and subject.

  • Développement d’un jumeau numérique pour le pilotage en énergie d’une opération de forgeage 
    Article dans une revue sans comité de lecture
    URIBE, David; KRUMPIPE, Pierre; ccBAUDOUIN, Cyrille; ccDURAND, Camille (CIFORGE, 2022-06)
    Depuis plusieurs années, les processus de fabrication sont progressivement automatisés pour améliorer leur répétabilité et leur reproductibilité. Parallèlement, des optimisations sont apportées afin d’améliorer la robustesse ...
  • Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccDURAND, Camille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2023-12)
    In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based ...
  • Accurate real-time modeling for multiple-blow forging 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2024-10)
    Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time ...
  • Enhancing metal-forming predictions with VR-infused digital twin models 
    Communication avec acte
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccLOCARD, Yoan; ccDURAND, Camille; ccBIGOT, Regis (Materials Research Forum LLC, 2024-05)
    This article presents a two-step method to enhance metal-forming predictions by integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper upsetting operations. The process begins with ...
  • Enhancing data representation in forging processes: Investigating discretization and R-adaptivity strategies with Proper Orthogonal Decomposition reduction 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Elsevier, 2024-12)
    Effective data reduction techniques are crucial for enhancing computational efficiency in complex industrial processes such as forging. In this study, we investigate various discretization and mesh adaptivity strategies ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales