Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory
Article dans une revue avec comité de lecture
Date
2023-01-04Journal
NanotechnologyRésumé
Nonlocal strain gradient theory is widely used when dealing with micro-and nano-structures. In such framework, small-scale effects cannot be ignored. In this paper a model of radial vibration of an isotropic elastic nanosphere is theoretically investigated. The frequency equation is obtained from a nonlocal elastic constitutive law, based on a mix between local and nonlocal strain. This model is composed of both the classical gradient model and the Eringen's nonlocal elasticity model. To check the validity and accuracy of this theoretical approach, a comparison is made with the literature in certain specific cases, which shows a good agreement. Numerical examples are finally conducted to show the impact of small-scale effects in the radial vibration, which need to be included in the nonlocal strain gradient theory of nanospheres. It reveals that the vibration behavior greatly depends on the nanosphere size and nonlocal and strain gradient parameters. Particularly, when the nanospheres radius is smaller than a critical radius, the small-scale effects play a key role. Thus, the obtained frequency equation for radial vibration is very useful to interpret the experimental measurements of vibrational characteristics of nanospheres.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureThe study of artificial microparticles (capsules and vesicles) has gained a growing interest with the emergence of bioengineering. One of their promoting applications is their use as therapeutic vectors for drug delivery, ...
-
Article dans une revue avec comité de lectureA promising advance of bioengineering consists in the development of micro-nanoparticles as drug delivery vehicles injected intravenously or intraarterialy for targeted treatment. Pro cient functioning of drug carries is ...
-
Article dans une revue avec comité de lectureThe ascending branch of the aorta is one of the most stressed organ of the arterial system. We aim to design a biomechanical model for analysing the aorta dynamics under a shock. The model includes the aorta layers and the ...
-
Article dans une revue avec comité de lectureThis paper studies the influence of boundary conditions on a fluid medium of finite depth.We determine the frequencies and the modal shapes of the fluid.The fluid is assumed to be incompressible and viscous. A potential ...
-
Article dans une revue avec comité de lectureA generalized analytical approach for the propagation of Bleustein–Gulyaev wave in a piezoelectric material loaded on its surface with a viscoelastic fluid is established in this paper. The Bleustein–Gulyaev waveguide ...