• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Extreme nonlinear dynamics of cantilever beams: effect of gravity and slenderness on the nonlinear modes

Article dans une revue avec comité de lecture
Auteur
DEBEURRE, Marielle
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
GROLET, Aurélien
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/24164
DOI
10.1007/s11071-023-08637-x
Date
2023-06-15
Journal
Nonlinear Dynamics

Résumé

In this paper, the effect of gravity on the nonlinear extreme amplitude vibrations of a slender, vertically-oriented cantilever beam is investigated. The extreme nonlinear vibrations are modeled using a finite element discretization of the geometrically exact beam model solved in the frequency domain through a combination of harmonic balance and a continuation method for periodic solutions. The geometrically exact model is ideal for dynamic simulations at extreme amplitudes as there is no limitation on the rotation of the cross-sections due to the terms governing the rotation being kept exact. It is shown that the very large amplitude vibrations of dimensionless beam structures depend principally on two parameters, a geometrical parameter and a gravity parameter. By varying these two parameters, the effect of gravity in either a standing or hanging configuration on the natural (linear) modes as well as on the nonlinear modes in extreme amplitude vibration is studied. It is shown that gravity, in the case of a standing cantilever, is responsible for a linear softening behavior and a nonlinear hardening behavior, particularly pronounced on the first bending mode. These behaviors are reversed for a hanging cantilever.

Fichier(s) constituant cette publication

Nom:
LISPEN_ND_2023_DEBEURRE.pdf
Taille:
3.617Mo
Format:
PDF
Fin d'embargo:
2024-02-01
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Quaternion-based finite-element computation of nonlinear modes and frequency responses of geometrically exact beam structures in three dimensions 
    Article dans une revue avec comité de lecture
    ccDEBEURRE, Marielle; GROLET, Aurélien; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2024-06)
    In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) ...
  • Phase resonance testing of highly flexible structures: Measurement of conservative nonlinear modes and nonlinear damping identification 
    Article dans une revue avec comité de lecture
    ccDEBEURRE, Marielle; ccBENACCHIO, Simon; GROLET, Aurélien; GRENAT, Clément; ccGIRAUD-AUDINE, Christophe; THOMAS, Olivier (Elsevier BV, 2024-06)
    This article addresses the measurement of the nonlinear modes of highly flexible structures vibrating at extreme amplitude, using a Phase-Locked Loop experimental continuation technique. By separating the motion into its ...
  • Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures 
    Article dans une revue avec comité de lecture
    DEBEURRE, Marielle; GROLET, Aurélien; COCHELIN, Bruno; ccTHOMAS, Olivier (Elsevier BV, 2023-03)
    An original method for the simulation of the dynamics of highly flexible slender structures is presented. The flexible structures are modeled via a finite element (FE) discretization of a geometrically exact two-dimensional ...
  • Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds 
    Article dans une revue avec comité de lecture
    MARTIN, Adrien; OPRENI, Andrea; ccVIZZACCARO, Alessandra; ccDEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; ccTHOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)
    The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
  • On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; GROLET, Aurélien; ccTHOMAS, Olivier; DEÜ, Jean-François (Springer Verlag, 2019)
    This paper presents a general methodology to compute nonlinear frequency responses of flat structures subjected to large amplitude transverse vibrations, within a finite element context. A reduced-order model (ROM)is ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales