• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • View Item
  • Home
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing metal-forming predictions with VR-infused digital twin models

Communication avec acte
Author
ccURIBE, David
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBAUDOUIN, Cyrille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccLOCARD, Yoan
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccDURAND, Camille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBIGOT, Regis
107452 Laboratoire de Conception Fabrication Commande [LCFC]

URI
http://hdl.handle.net/10985/25188
DOI
10.21741/9781644903131-254
Date
2024-05

Abstract

This article presents a two-step method to enhance metal-forming predictions by integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper upsetting operations. The process begins with developing a real-time predictive surrogate model that considers actual process parameters, acting as a crucial link between conventional numerical simulations and immediate decision-making. Subsequently, the surrogate model is integrated into a realistic VR environment, aligned with the experimental forging setup. The study underscores the need and potential advantages of real-time digital twins in the forging field, emphasizing the bridging capability between numerical simulations and instant decision-making through predictive modeling and immersive virtual environments.

Files in this item

Name:
LCFC_ESAFORM_2024_URIBE.pdf
Size:
1.256Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Laboratoire de Conception Fabrication Commande (LCFC)

Related items

Showing items related by title, author, creator and subject.

  • Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccDURAND, Camille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2023-12)
    In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based ...
  • Accurate real-time modeling for multiple-blow forging 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2024-10)
    Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time ...
  • Enhancing data representation in forging processes: Investigating discretization and R-adaptivity strategies with Proper Orthogonal Decomposition reduction 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Elsevier, 2024-12)
    Effective data reduction techniques are crucial for enhancing computational efficiency in complex industrial processes such as forging. In this study, we investigate various discretization and mesh adaptivity strategies ...
  • Towards the Real-Time Piloting of a Forging Process: Development of a Surrogate Model for a Multiple Blow Operation 
    Communication avec acte
    URIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; KRUMPIPE, Pierre; ccBIGOT, Regis (Springer Nature Switzerland, 2023-08)
    Forging processes are defined by variables related to the workpiece, the tools, the machine, and the process itself, and these variables are called process variables. They have a direct impact on the quality of the finished ...
  • Real-time forging process control: integrating billet-related surrogate and machine behavior models 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2025-04)
    This study introduces a predictive surrogate model for real-time control in cold upsetting processes, incorporating both material and machine behaviors. Traditional approaches often simplify machine behavior as rigid or ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales