• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Regularized regressions for parametric models based on separated representations

Article dans une revue avec comité de lecture
Auteur
ccSANCARLOS, Abel
CHAMPANEY, Victor
ccCUETO, Elias
95355 Universidad de Zaragoza = University of Zaragoza [Saragossa University] = Université de Saragosse
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/24746
DOI
10.1186/s40323-023-00240-4
Date
2023-03
Journal
Advanced Modeling and Simulation in Engineering Sciences

Résumé

Regressions created from experimental or simulated data enable the construction of metamodels, widely used in a variety of engineering applications. Many engineering problems involve multi-parametric physics whose corresponding multi-parametric solutions can be viewed as a sort of computational vademecum that, once computed offline, can be then used in a variety of real-time engineering applications including optimization, inverse analysis, uncertainty propagation or simulation based control. Sometimes, these multi-parametric problems can be solved by using advanced model order reduction—MOR-techniques. However, solving these multi-parametric problems can be very costly. In that case, one possibility consists in solving the problem for a sample of the parametric values and creating a regression from all the computed solutions. The solution for any choice of the parameters is then inferred from the prediction of the regression model. However, addressing high-dimensionality at the low data limit, ensuring accuracy and avoiding overfitting constitutes a difficult challenge. The present paper aims at proposing and discussing different advanced regressions based on the proper generalized decomposition (PGD) enabling the just referred features. In particular, new PGD strategies are developed adding different regularizations to the s-PGD method. In addition, the ANOVA-based PGD is proposed to ally them.

Fichier(s) constituant cette publication

Nom:
PIMM_AMSES_2023_SANCARLOS.pdf
Taille:
3.263Mo
Format:
PDF
Description:
Regularized regressions for ...
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Parametric Electromagnetic Analysis of Radar-Based Advanced Driver Assistant Systems 
    Article dans une revue avec comité de lecture
    VERMIGLIO, Simona; CHAMPANEY, Victor; SANCARLOS, Abel; DAIM, Fatima; KEDZIA, Jean Claude; DUVAL, Jean Louis; DIEZ, Pedro; ccCHINESTA SORIA, Francisco (MDPI, 2020)
    Efficient and optimal design of radar-based Advanced Driver Assistant Systems (ADAS) needs the evaluation of many different electromagnetic solutions for evaluating the impact of the radome on the electromagnetic wave ...
  • From ROM of Electrochemistry to AI-Based Battery Digital and Hybrid Twin 
    Article dans une revue avec comité de lecture
    SANCARLOS, Abel; CAMERON, Morgan; ABEL, Andreas; ccCUETO, Elias; DUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2020)
    Lithium-ion batteries are widely used in the automobile industry (electric vehicles and hybrid electric vehicles) due to their high energy and power density. However, this raises new safety and reliability challenges which ...
  • Fast Computation of Multi-Parametric Electromagnetic Fields in Synchronous Machines by Using PGD-Based Fully Separated Representations 
    Article dans une revue avec comité de lecture
    SANCARLOS, Abel; ccGHNATIOS, Chady; DUVAL, Jean-Louis; ZERBIB, Nicolas; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI AG, 2021)
    A novel Model Order Reduction (MOR) technique is developed to compute high-dimensional parametric solutions for electromagnetic fields in synchronous machines. Specifically, the intrusive version of the Proper Generalized ...
  • A novel sparse reduced order formulation for modeling electromagnetic forces in electric motors 
    Article dans une revue avec comité de lecture
    SANCARLOS, Abel; ccCUETO, Elias; ccCHINESTA SORIA, Francisco; DUVAL, Jean-Louis (Springer Verlag, 2021)
    A novel model order reduction (MOR) technique is presented to achieve fast and real-time predictions as well as high-dimensional parametric solutions for the electromagnetic force which will help the design, analysis of ...
  • Optimal velocity planning based on the solution of the Euler-Lagrange equations with a neural network based velocity regression 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; ccDI LORENZO, Daniele; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)
    Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales