• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures

Article dans une revue avec comité de lecture
Auteur
DEBEURRE, Marielle
1003434 Arts et Métiers Sciences et Technologies
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
GROLET, Aurélien
1003434 Arts et Métiers Sciences et Technologies
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
COCHELIN, Bruno
300415 École Centrale de Marseille [ECM]
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
1003434 Arts et Métiers Sciences et Technologies

URI
http://hdl.handle.net/10985/24783
DOI
10.1016/j.jsv.2022.117534
Date
2023-03
Journal
Journal of Sound and Vibration

Résumé

An original method for the simulation of the dynamics of highly flexible slender structures is presented. The flexible structures are modeled via a finite element (FE) discretization of a geometrically exact two-dimensional beam model, which entirely preserves the geometrical nonlinearities inherent in such systems where the rotation of the cross-section can be extreme. The FE equation is solved by a combination of harmonic balance (HBM) and asymptotic numerical (ANM) methods. The novel solving scheme is rooted entirely in the frequency domain and is capable of computing both the structure’s frequency response under periodic external forces as well as its nonlinear modes. An overview of the proposed numerical strategy is outlined and simulations are shown and discussed in detail for several test cases.

Fichier(s) constituant cette publication

Nom:
LISPEN_JSV_2023_THOMAS.pdf
Taille:
2.886Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Extreme nonlinear dynamics of cantilever beams: effect of gravity and slenderness on the nonlinear modes 
    Article dans une revue avec comité de lecture
    DEBEURRE, Marielle; GROLET, Aurélien; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2023-06-15)
    In this paper, the effect of gravity on the nonlinear extreme amplitude vibrations of a slender, vertically-oriented cantilever beam is investigated. The extreme nonlinear vibrations are modeled using a finite element ...
  • Quaternion-based finite-element computation of nonlinear modes and frequency responses of geometrically exact beam structures in three dimensions 
    Article dans une revue avec comité de lecture
    ccDEBEURRE, Marielle; GROLET, Aurélien; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2024-06)
    In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) ...
  • Phase resonance testing of highly flexible structures: Measurement of conservative nonlinear modes and nonlinear damping identification 
    Article dans une revue avec comité de lecture
    ccDEBEURRE, Marielle; ccBENACCHIO, Simon; GROLET, Aurélien; GRENAT, Clément; ccGIRAUD-AUDINE, Christophe; THOMAS, Olivier (Elsevier BV, 2024-06)
    This article addresses the measurement of the nonlinear modes of highly flexible structures vibrating at extreme amplitude, using a Phase-Locked Loop experimental continuation technique. By separating the motion into its ...
  • Comparison of ANM and Predictor-Corrector Method to Continue Solutions of Harmonic Balance Equations 
    Article dans une revue avec comité de lecture
    WOIWODE, Lukas; BALAJI, Nidish Narayanaa; KAPPAUF, Jonas; TUBITA, Fabia; GUILLOT, Louis; VERGEZ, Christophe; COCHELIN, Bruno; GROLET, Aurélien; KRACK, Malte (Springer International Publishing, 2019)
    In this work we apply and compare two numerical path continuation algorithms for solving algebraic equations arising when applying the Harmonic Balance Method to compute periodic regimes of nonlinear dynamical systems. The ...
  • Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds 
    Article dans une revue avec comité de lecture
    MARTIN, Adrien; OPRENI, Andrea; ccVIZZACCARO, Alessandra; ccDEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; ccTHOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)
    The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales