Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures
Article dans une revue avec comité de lecture
Date
2023-03Journal
Journal of Sound and VibrationRésumé
An original method for the simulation of the dynamics of highly flexible slender structures is presented. The flexible structures are modeled via a finite element (FE) discretization of a geometrically exact two-dimensional beam model, which entirely preserves the geometrical nonlinearities inherent in such systems where the rotation of the cross-section can be extreme. The FE equation is solved by a combination of harmonic balance (HBM) and asymptotic numerical (ANM) methods. The novel solving scheme is rooted entirely in the frequency domain and is capable of computing both the structure’s frequency response under periodic external forces as well as its nonlinear modes. An overview of the proposed numerical strategy is outlined and simulations are shown and discussed in detail for several test cases.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureDEBEURRE, Marielle; GROLET, Aurélien; THOMAS, Olivier (Springer Science and Business Media LLC, 2023-06-15)In this paper, the effect of gravity on the nonlinear extreme amplitude vibrations of a slender, vertically-oriented cantilever beam is investigated. The extreme nonlinear vibrations are modeled using a finite element ...
-
Article dans une revue avec comité de lectureDEBEURRE, Marielle; BENACCHIO, Simon; GROLET, Aurélien; GRENAT, Clément; GIRAUD-AUDINE, Christophe; THOMAS, Olivier (Elsevier BV, 2024-06)This article addresses the measurement of the nonlinear modes of highly flexible structures vibrating at extreme amplitude, using a Phase-Locked Loop experimental continuation technique. By separating the motion into its ...
-
Article dans une revue avec comité de lectureDEBEURRE, Marielle; GROLET, Aurélien; THOMAS, Olivier (Springer Science and Business Media LLC, 2024-06)In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) ...
-
Article dans une revue avec comité de lectureMARTIN, Adrien; OPRENI, Andrea; VIZZACCARO, Alessandra; DEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; THOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
-
Article dans une revue avec comité de lectureThis paper presents a general methodology to compute nonlinear frequency responses of flat structures subjected to large amplitude transverse vibrations, within a finite element context. A reduced-order model (ROM)is ...