• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Operator Engagement during AI-assisted Manufacturing Work Using Optimal State Deviation Feedback System

Communication avec acte
Author
COUTURE, Loic
304765 HEC Montréal [HEC Montréal]
ccPASSALACQUA, Mario
57241 École Polytechnique de Montréal [EPM]
ccJOBLOT, Laurent
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
ccMAGNANI, Florian
108098 Centre d'Études et de Recherche en Gestion d'Aix-Marseille [CERGAM]
ccPELLERIN, Robert
57241 École Polytechnique de Montréal [EPM]
LEGER, Pierre-Majorique
304765 HEC Montréal [HEC Montréal]

URI
http://hdl.handle.net/10985/24788
Date
2024-02-07

Abstract

The integration of Artificial Intelligence (AI) in manufacturing is shifting the focus of operators from manual labor to cognitive supervision roles. While this transition demands more engagement from operators, the less stimulating nature of monitoring tasks has, paradoxically, reduced operator involvement, consequently presenting new challenges in performance maintenance. Addressing this issue, our research adopted an iterative design science methodology to create a biocybernetic system that aims to enhance operator engagement in their evolving workplace. This system leverages physiological signals to intuitively display how much an operator’s engagement level deviates from an ideal state, ensuring operators stay aware of their psychophysiological state of engagement and can quickly adjust to any decreases in engagement. In this paper, we detail the 4-step process that led to the development of the first version of the system. Capitalizing on the physiological differences observed in manufacturing operators during “high” and “low” engagement scenarios, we defined a task-specific Optimal State Deviation Index (OSDI) formula. This formula enabled us to predict participants' engagement states with an 80.95 % success rate in our testing dataset.

Files in this item

Name:
LISPEN_ARCI_2024_JOBLOT.pdf
Size:
811.5Kb
Format:
PDF
Description:
Article de conférence
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Adaptive System to Enhance Operator Engagement during Smart Manufacturing Work 
    Article dans une revue avec comité de lecture
    COUTURE, Loïc; PASSALACQUA, Mario; ccJOBLOT, Laurent; MAGNANI, Florian; PELLERIN, Robert; LEGER, Pierre-Majorique (2024-05-30)
    Sustaining optimal task engagement is becoming vital in smart factories, where manufacturing operators' roles are increasingly shifting from hands-on machinery tasks to supervising complex automated systems. However, because ...
  • Industry 5.0 use cases development framework 
    Article dans une revue avec comité de lecture
    GOUJON, Alexandre; ccROSIN, Frédéric; ccMAGNANI, Florian; ccLAMOURI, Samir; ccPELLERIN, Robert; ccJOBLOT, Laurent (Informa UK Limited, 2024-01-31)
    The Industry 5.0 concept has placed human needs at the heart of industrial processes. This raises the question of how new technologies can enhance employee decision-making processes and influence the evolution of team ...
  • Lean 4.0: typology of scenarios and case studies to characterize Industry 4.0 autonomy model 
    Communication avec acte
    ccROSIN, Frédéric; ccMAGNANI, Florian; ccJOBLOT, Laurent; ccFORGET, Pascal; PELLERIN, Robert; ccLAMOURI, Samir (Elsevier BV, 2022-10)
    Industry 4.0 is leading to rethink how operational decisions are made within companies. In particular, it raises the question of the evolution of employee involvement and autonomy in operational decision-making in a Lean ...
  • Transformer le secteur de la construction par le numérique : un chantier ambitieux et nécessaire 
    Chapitre d'ouvrage scientifique
    BOURGAULT, Mario; DANJOU, Christophe; PELLERIN, Robert; PERRIER, Nathalie; BOTON, Conrad; FORGUES, Daniel; IORDANOVA, Ivanka; POIRIER, Erik; RIVEST, Louis; JOBLOT, Laurent (CIRANO, 2021)
    L’industrie de la construction joue un rôle prépondérant dans l’économie. Malgré son importance, elle fut longtemps décrite comme moins productive et innovante que d’autres secteurs. Depuis quelques années, cette situation ...
  • Litigation management process in construction industry 
    Article dans une revue avec comité de lecture
    ECHTERNACH--JAUBERT, Marine; PELLERIN, Robert; JOBLOT, Laurent (Elsevier, 2021)
    For an Engineering, Procurement and Construction Management contract, collaboration between the different actors is essential from the very beginning of the project to consider all the constraints. Working upstream reduces ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales