• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
  • Home
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and validation of a local thermal non-equilibrium model for high-temperature thermal energy storage in packed beds

Article dans une revue avec comité de lecture
Author
ccLIU, Shaolin
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccAHMADI-SENICHAULT, Azita
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccLEVET, Cyril
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccLACHAUD, Jean
1002421 Institut de Mécanique et d'Ingénierie [I2M]

URI
http://hdl.handle.net/10985/24863
DOI
10.1016/j.est.2023.109957
Date
2024-02
Journal
Journal of Energy Storage

Abstract

High-temperature thermal energy storage (TES) in packed beds is gaining interest for industrial energy recovery. The wide range of temperature distributions causes significant variations in thermophysical properties of the fluid and solid phases, leading to inaccuracies of classical TES models and heat transfer correlations. The objective of this work is to develop and validate a detailed but pragmatic model accounting for high-temperature effects. Based on a literature survey spanning over several communities interested in high- temperature porous media, we propose a generic local thermal non-equilibrium model for granulate porous media accounting for conservation of mass, momentum and energy (two-equation temperature model). The effective parameters needed to inform the model are the effective thermal conductivities of the different phases and the heat transfer coefficient. An experimental-numerical inverse analysis method is employed to determine these parameters. A dedicated experimental facility has been designed and built to study a model granulate made of glass bead of 16 mm diameter. Experiments are conducted using the Transient Single-Blow Technique (TSBT) by passing hot air (ranging from 293 K to 630 K) through cold particles at various mass flow rates, covering a Reynolds number range of 58 to 252. The new model was implemented in the Porous material Analysis Toolbox based on OpenFoam (PATO) used to compute the transient temperature fields. Two optimization algorithms were employed to determine the parameters by minimizing the error between experimental and simulated temperatures: a Latin Hypercube Sampling (LHS) method, and a local optimization method Adaptive nonlinear least-squares algorithm (NL2SOL). The results indicate that the value of heat transfer coefficient ℎ�� in the two-equation model falls in the range of 1.0 × 104 ∼ 1.93× 104 W/(m3 K) under the given conditions. The axial dispersion gas thermal conductivity was found to be around 5.9 and 67.1 times higher than the gas thermal conductivity at Peclet numbers of around 55 and 165, respectively. Furthermore, two improved correlations of Nusselt number (���� = 2+1.54����(�� )0.6�� ��(�� )1∕3) and of axial dispersion gas thermal conductivity (��������,∥ = 0.00053����(�� )2.21�� ��(�� ) ⋅ ���� ) are proposed and validated for a range of Reynolds number from 58 to 252. The overall approach is therefore validated for the model granulate of the study, opening new perspectives towards more precise design and monitoring of high-temperature TES systems.

Files in this item

Name:
I2M-JES-LIU-2024.pdf
Size:
3.893Mb
Format:
PDF
Embargoed until:
2024-08-01
View/Open

Collections

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Related items

Showing items related by title, author, creator and subject.

  • Experimental investigation and tomography analysis of Darcy-Forchheimer flows in thermal protection systems 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI-SENICHAULT, Azita; SCANDELLI, Hermes; ccLACHAUD, Jean (Elsevier BV, 2024-05)
    n thermal protection systems (TPS), Darcy’s law or Darcy-Forchheimer’s law is employed to model the pyrolysis gas flow within the anisotropic porous ablator depending on the flow regime considered. A key challenge with ...
  • Experimental investigation on the validity of the local thermal equilibrium assumption in ablative-material response models 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI, Azita; ccLEVET, Cyril; ccLACHAUD, Jean (Elsevier BV, 2023-10)
    Thermal Protection Systems (TPS) material response models rely on the assumption of local thermal equilibrium (LTE) between the solid phase and the gas phase. This assumption was challenged and investigated by several ...
  • Multi-scale investigation of heat and momentum transfer in packed-bed TES systems up to 800 K 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI, Azita; POZZOBON, Victor; ccLACHAUD, Jean (2024-07)
    With the rising cost of energy and the advancement of corporate social responsibility, there is a growing interest in addressing the challenge of recovering and storing high-temperature waste heat. Sensible heat storage ...
  • Experimental investigation and DEM-CFD analysis of Darcy–Forchheimer flows in randomly packed bed systems of wood particles 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI, Azita; ccBEN ABDELWAHED, Amine; ccYAO, Hui; ccLACHAUD, Jean (Elsevier BV, 2024-12)
    Understanding the packing structure and pressure drop across a randomly packed bed of wood particles is essential for the design and control of wood drying, pyrolysis, and gasification processes. This study utilizes experimental ...
  • Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam 
    Article dans une revue avec comité de lecture
    SCANDELLI, Hermes; ccAHMADI-SENICHAULT, Azita; RICHARD, Franck; ccLACHAUD, Jean (MDPI AG, 2021)
    The numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis, which leads to the production of various gaseous species, and the combustion of these species in the flame, which produces ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales