• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Voir le document
  • Accueil de SAM
  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental investigation and tomography analysis of Darcy-Forchheimer flows in thermal protection systems

Article dans une revue avec comité de lecture
Auteur
ccLIU, Shaolin
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccAHMADI-SENICHAULT, Azita
1002421 Institut de Mécanique et d'Ingénierie [I2M]
SCANDELLI, Hermes
1002421 Institut de Mécanique et d'Ingénierie [I2M]
ccLACHAUD, Jean
1002421 Institut de Mécanique et d'Ingénierie [I2M]

URI
http://hdl.handle.net/10985/24903
DOI
10.1016/j.actaastro.2024.02.027
Date
2024-05
Journal
Acta Astronautica

Résumé

n thermal protection systems (TPS), Darcy’s law or Darcy-Forchheimer’s law is employed to model the pyrolysis gas flow within the anisotropic porous ablator depending on the flow regime considered. A key challenge with using these laws is first, the knowledge of the validity domain of each flow regime in terms of a critical Reynolds number (������ ). Secondly, the lack of data on macroscopic properties, namely, the permeability and Forchheimer tensors is particularly challenging for the relevance of the models. The objective of this work is to contribute to overcoming these challenges by performing experimental and X-ray tomographic image-based characterization of Calcarb, a commercial carbon preform used for manufacturing TPS. For this purpose, fluid flow within Calcarb was studied experimentally in the Through-Thickness (TT) and the In-Plane (IP) directions for Reynolds numbers of 0.05 to 10.46 -representative of the TPS application. Tomography image-based micro-scale simulations, involving the direct resolution of the Navier–Stokes equations under both flow regimes, were also performed. Experimental results exhibit the anisotropic nature of Calcarb, namely through ������ values, corresponding to the Darcy flow regime limit, slightly different in the two directions (������ of 0.31 and 0.43) with measured permeability values of 1.248 × 10−10 m2 and 1.615 × 10−10 m2 for TT and IP directions respectively. In the Forchheimer regime, experimental Forchheimer coefficients �� were 2.0010 × 105 m−1 (TT) and 1.4948 × 105 m−1 (IP). During the simulation process, a numerical strategy was defined to obtain the permeability tensor yielding values within 8% of the experimental ones. The comparison of experimental results vs simulation results in the Forchheimer regime was performed through the analysis of the pressure gradients as functions of ���� in the ��, ��, and �� directions. The numerical estimations were compared successfully with experimental measurements, with a discrepancy of 5.2%, for ���� values up to 2.4

Fichier(s) constituant cette publication

Nom:
I2M-AA-2024-LIU.pdf
Taille:
3.782Mo
Format:
PDF
Voir/Ouvrir
CC BY-NC-ND
Ce document est diffusé sous licence CC BY-NC-ND

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Mécanique et d’Ingénierie de Bordeaux (I2M)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Simulation of Wood Combustion in PATO Using a Detailed Pyrolysis Model Coupled to fireFoam 
    Article dans une revue avec comité de lecture
    SCANDELLI, Hermes; ccAHMADI-SENICHAULT, Azita; RICHARD, Franck; ccLACHAUD, Jean (MDPI AG, 2021)
    The numerical simulation of fire propagation requires capturing the coupling between wood pyrolysis, which leads to the production of various gaseous species, and the combustion of these species in the flame, which produces ...
  • Computation of the Permeability Tensor of Non-Periodic Anisotropic Porous Media from 3D Images 
    Article dans une revue avec comité de lecture
    SCANDELLI, Hermes; ccAHMADI-SENICHAULT, Azita; LEVET, C.; LACHAUD, Jean (Springer Science and Business Media LLC, 2022-04-13)
    The direct proportionality between the flow rate and the pressure gradient of creeping flows was experimentally discovered by H. Darcy in the 19th century and theoretically justified a couple of decades ago using upscaling ...
  • Development and validation of a local thermal non-equilibrium model for high-temperature thermal energy storage in packed beds 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI-SENICHAULT, Azita; ccLEVET, Cyril; ccLACHAUD, Jean (Elsevier BV, 2024-02)
    High-temperature thermal energy storage (TES) in packed beds is gaining interest for industrial energy recovery. The wide range of temperature distributions causes significant variations in thermophysical properties of ...
  • Two-temperature ablative material response model with application to Stardust and MSL atmospheric entries 
    Article dans une revue avec comité de lecture
    SCANDELLI, Hermes; ccAHMADI, Azita; ccLACHAUD, Jean (Elsevier BV, 2023-06)
    Ablative material response codes currently in use consider local thermal equilibrium between the solid phases and the pyrolysis gases. For typical entry conditions, this hypothesis may be justified by the fact that the ...
  • Multi-scale investigation of heat and momentum transfer in packed-bed TES systems up to 800 K 
    Article dans une revue avec comité de lecture
    ccLIU, Shaolin; ccAHMADI, Azita; POZZOBON, Victor; ccLACHAUD, Jean (2024-07)
    With the rising cost of energy and the advancement of corporate social responsibility, there is a growing interest in addressing the challenge of recovering and storing high-temperature waste heat. Sensible heat storage ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales