• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced Deep Learning Techniques for Industry 4.0: Application to Mechanical Design and Structural Health Monitoring

Communication avec acte
Author
ccABABSA, Fakhreddine
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/25144
DOI
10.5220/0012364300003636
Date
2024-02

Abstract

Nowadays, Deep Learning (DL) techniques are increasingly employed in industrial applications. This paper investigate the development of data-driven models for two use cases: Additive Manufacturing-driven Topology Optimization and Structural Health Monitoring (SHM). We first propose an original data-driven generative method that integrates the mechanical and geometrical constraints concurrently at the same conceptual level and generates a 2D design accordingly. In this way, it adapts the geometry of the design to the manufacturing criteria, allowing the designer better interpretation and avoiding being stuck in a timeconsuming loop of drawing the CAD and testing its performance. On the other hand, SHM technique is dedicated to the continuous and non-invasive monitoring of structures integrity, ensuring safety and optimal performances through on-site real-time measurements. We propose in this work new ways of structuring data that increase the accuracy of data driven SHM algorithms and that are based on the physical knowledge related with the structure to be inspected. We focus our study on the damage classification step within the aeronautic context, where the primary objective is to distinguish between different damage types in composite.

Files in this item

Name:
PIMM_ICAART_2024_ABABSA.pdf
Size:
1.113Mb
Format:
PDF
Description:
Advanced Deep Learning Techniques ...
View/Open
CC BY-NC-ND
This document is available under CC BY-NC-ND license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • GMCAD: an original Synthetic Dataset of 2D Designs along their Geometrical and Mechanical Conditions 
    Article dans une revue avec comité de lecture
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ADJED, Faouzi; ABABSA, Fakhreddine; ccDANGLADE, Florence (Elsevier BV, 2022)
    We build an original synthetic dataset of 2D mechanical designs alongside their mechanical and geometric constraints, GMCAD. Such a dataset allows training Deep Learning (DL) models for Design for Additive Manufacturing ...
  • Methodology for the Field Evaluation of the Impact of Augmented Reality Tools for Maintenance Workers in the Aeronautic Industry 
    Article dans une revue avec comité de lecture
    LOIZEAU, Quentin; ABABSA, Fakhreddine; ccMERIENNE, Frédéric; ccDANGLADE, Florence (Frontiers, 2021)
    Augmented Reality (AR) enhances the comprehension of complex situations by making the handling of contextual information easier. Maintenance activities in aeronautics consist of complex tasks carried out on various ...
  • Deep Learning Architecture for Topological Optimized Mechanical Design Generation with Complex Shape Criterion 
    Communication avec acte
    ALMASRI, Waad; BETTEBGHOR, Dimitri; ABABSA, Fakhreddine; ADJED, Faouzi; ccDANGLADE, Florence (Springer International Publishing, 2021)
    Topology optimization is a powerful tool for producing an optimal free-form design from input mechanical constraints. However, in its traditional-density-based approach, it does not feature a proper definition for the ...
  • 3D Human Pose Estimation with a Catadioptric Sensor in Unconstrained Environments Using an Annealed Particle Filter 
    Article dans une revue avec comité de lecture
    ABABSA, Fakhreddine; HADJ-ABDELKADER, Hicham; BOUI, Marouane (MDPI, 2020)
    The purpose of this paper is to investigate the problem of 3D human tracking in complex environments using a particle filter with images captured by a catadioptric vision system. This issue has been widely studied in the ...
  • Combining HoloLens and Leap-Motion for Free Hand-Based 3D Interaction in MR Environments 
    Communication avec acte
    ABABSA, Fakhreddine; HE, Junhui; ccCHARDONNET, Jean-Rémy (Springer International Publishing, 2020)
    The ability to interact with virtual objects using gestures would allow users to improve their experience in Mixed Reality (MR) environments, especially when they use AR headsets. Today, MR head-mounted displays like the ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales