Adaptive System to Enhance Operator Engagement during Smart Manufacturing Work
Article dans une revue avec comité de lecture
Auteur
Résumé
Sustaining optimal task engagement is becoming vital in smart factories, where manufacturing operators' roles are increasingly shifting from hands-on machinery tasks to supervising complex automated systems. However, because monitoring tasks are inherently less engaging than manual operation tasks, operators may have a growing difficulty in keeping the optimal levels of engagement required to detect system errors in highly automated environments. Addressing this issue, we created an adaptive task engagement feedback system designed to enhance manufacturing operators’ engagement while working with highly automated systems. Utilizing real-time acceleration, heart rate, and respiration rate data, our system provides an intuitive visual representation of an operator's engagement level through a color gradient, ensuring operators can stay informed of their engagement levels in real-time and make prompt adjustments if required. This article elaborates on the six-step process that guided the development of this adaptive feedback system. We developed a task engagement index by leveraging the physiological distinctions between more and less engaging manufacturing scenarios and using automation to induce lower engagement. This index demonstrates a prediction accuracy rate of 80.95 % for engagement levels, as demonstrated by a logistic regression model employing leave-one-out cross-validation. The implications of deploying this adaptive system include enhanced operator engagement, higher productivity and improved safety measures.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication avec acteCOUTURE, Loic; PASSALACQUA, Mario; JOBLOT, Laurent; MAGNANI, Florian; PELLERIN, Robert; LEGER, Pierre-Majorique (2024-02-07)The integration of Artificial Intelligence (AI) in manufacturing is shifting the focus of operators from manual labor to cognitive supervision roles. While this transition demands more engagement from operators, the less ...
-
Article dans une revue avec comité de lectureGOUJON, Alexandre; ROSIN, Frédéric; MAGNANI, Florian; LAMOURI, Samir; PELLERIN, Robert; JOBLOT, Laurent (Informa UK Limited, 2024-01-31)The Industry 5.0 concept has placed human needs at the heart of industrial processes. This raises the question of how new technologies can enhance employee decision-making processes and influence the evolution of team ...
-
Communication avec acteROSIN, Frédéric; MAGNANI, Florian; JOBLOT, Laurent; FORGET, Pascal; PELLERIN, Robert; LAMOURI, Samir (Elsevier BV, 2022-10)Industry 4.0 is leading to rethink how operational decisions are made within companies. In particular, it raises the question of the evolution of employee involvement and autonomy in operational decision-making in a Lean ...
-
Chapitre d'ouvrage scientifiqueBOURGAULT, Mario; DANJOU, Christophe; PELLERIN, Robert; PERRIER, Nathalie; BOTON, Conrad; FORGUES, Daniel; IORDANOVA, Ivanka; POIRIER, Erik; RIVEST, Louis; JOBLOT, Laurent (CIRANO, 2021)L’industrie de la construction joue un rôle prépondérant dans l’économie. Malgré son importance, elle fut longtemps décrite comme moins productive et innovante que d’autres secteurs. Depuis quelques années, cette situation ...
-
Article dans une revue avec comité de lectureECHTERNACH--JAUBERT, Marine; PELLERIN, Robert; JOBLOT, Laurent (Elsevier, 2021)For an Engineering, Procurement and Construction Management contract, collaboration between the different actors is essential from the very beginning of the project to consider all the constraints. Working upstream reduces ...