• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
  • Home
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of precharge placement in sheet molding compound process

Article dans une revue avec comité de lecture
Author
ccEBRAHIMIAN, Fariba
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
RODRIGUEZ, Sebastian
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccDI LORENZO, Daniele
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]

URI
http://hdl.handle.net/10985/25747
DOI
10.1007/s12289-024-01836-w
Date
2024-06-01
Journal
International Journal of Material Forming

Abstract

AbstractThis study aims to provide precise predictions for the compression of reinforced polymers during the sheet Molding Compound (SMC) process, ensuring the attainment of a predefined structure while preventing material overflow during the process. The primary challenge revolves around identifying the optimal initial shape to prevent material rebound during the process. To confront this issue, a numerical model is utilized, faithfully simulating the SMC process and forming the foundation for our investigations. Furthermore, to optimize the pre-fill stage, a surrogate model is proposed to enhance modeling efficiency, and then an inverse analysis method is applied. This approach of minimizing material rebound during the SMC process results in a reliable metamodel to predict an initial mass shape accurately and at a low computational cost, thus ensuring the squeezed material fits the mold shape.

Files in this item

Name:
PIMM_IJMF_2024_EBRAHIMIAN.pdf
Size:
2.715Mb
Format:
PDF
Description:
Optimization of precharge placement ...
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Related items

Showing items related by title, author, creator and subject.

  • Damage identification technique by model enrichment for structural elastodynamic problems 
    Article dans une revue avec comité de lecture
    ccDI LORENZO, Daniele; RODRIGUEZ, Sebastian; ccCHAMPANEY, Laurent; ccGERMOSO, Claudia; ccBERINGHIER, Marianne; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-06)
    Structural Health Monitoring (SHM) techniques are key to monitor the health state of engineering structures, where damage type, location and severity are to be estimated by applying sophisticated techniques to signals ...
  • Describing and Modeling Rough Composites Surfaces by Using Topological Data Analysis and Fractional Brownian Motion 
    Article dans une revue avec comité de lecture
    ccRUNACHER, Antoine; ccKAZEMZADEH-PARSI, Mohammad-Javad; ccDI LORENZO, Daniele; CHAMPANEY, Victor; HASCOET, Nicolas; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (2023)
    Many composite manufacturing processes employ the consolidation of pre-impregnated preforms. However, in order to obtain adequate performance of the formed part, intimate contact and molecular diffusion across the different ...
  • Optimal velocity planning based on the solution of the Euler-Lagrange equations with a neural network based velocity regression 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; ccDI LORENZO, Daniele; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)
    Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...
  • Data Completion, Model Correction and Enrichment Based on Sparse Identification and Data Assimilation 
    Article dans une revue avec comité de lecture
    DI LORENZO, Daniele; CHAMPANEY, Victor; GERMOSO, Claudia; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (MDPI AG, 2022-07)
    Many models assumed to be able to predict the response of structural systems fail to efficiently accomplish that purpose because of two main reasons. First, some structures in operation undergo localized damage that degrades ...
  • A hybrid twin based on machine learning enhanced reduced order model for real-time simulation of magnetic bearings 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; RODRIGUEZ, Sebastian; TOMEZYK, Jerome; ccMOUTERDE, Joël; ccDUPUIS, Yves; DA SILVA, Joaquim; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-02)
    The simulation of magnetic bearings involves highly non-linear physics, with high dependency on the input variation. Moreover, such a simulation is time consuming and can’t run, within realistic computation time for control ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales