• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Koopman–Hill stability computation of periodic orbits in polynomial dynamical systems using a real-valued quadratic harmonic balance formulation

Article dans une revue avec comité de lecture
Author
BAYER, Fabia
LEINE, Remco I.
ccTHOMAS, Olivier
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]
1003434 Arts et Métiers Sciences et Technologies
GROLET, Aurélien
301320 École Nationale Supérieure d'Arts et Métiers [ENSAM]
543315 Laboratoire d’Ingénierie des Systèmes Physiques et Numériques [LISPEN]

URI
http://hdl.handle.net/10985/25624
DOI
10.1016/j.ijnonlinmec.2024.104894
Date
2024-12
Journal
International Journal of Non-Linear Mechanics

Abstract

In this paper, we generalize the Koopman–Hill projection method, which was recently introduced for the numerical stability analysis of periodic solutions, to be included immediately in classical real-valued harmonic balance (HBM) formulations. We incorporate it into the Asymptotic Numerical Method (ANM) continuation framework, providing a numerically efficient stability analysis tool for frequency response curves obtained through HBM. The Hill matrix, which carries stability information and follows as a by-product of the HBM solution procedure, is often computationally challenging to analyze with traditional methods. To address this issue, we generalize the Koopman–Hill projection stability method, which extracts the monodromy matrix from the Hill matrix using a matrix exponential, from complex-valued to real-valued formulations. In addition, we propose a differential recast procedure, which makes this real-valued Hill matrix immediately available within the ANM continuation framework. Using as an example a nonlinear von Kármán beam, we demonstrate that these modifications improve computational efficiency in the stability analysis of frequency response curves.

Files in this item

Name:
2024_IJNLM_KOOPMAN-HILL.pdf
Size:
1.387Mb
Format:
PDF
View/Open
CC BY
This document is available under CC BY license

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; GROLET, Aurélien; ccTHOMAS, Olivier; DEÜ, Jean-François (Springer Verlag, 2019)
    This paper presents a general methodology to compute nonlinear frequency responses of flat structures subjected to large amplitude transverse vibrations, within a finite element context. A reduced-order model (ROM)is ...
  • Quaternion-based finite-element computation of nonlinear modes and frequency responses of geometrically exact beam structures in three dimensions 
    Article dans une revue avec comité de lecture
    ccDEBEURRE, Marielle; GROLET, Aurélien; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2024-06)
    In this paper, a novel method for computing the nonlinear dynamics of highly flexible slender structures in three dimensions (3D) is proposed. It is the extension to 3D of a previous work restricted to inplane (2D) ...
  • Extreme nonlinear dynamics of cantilever beams: effect of gravity and slenderness on the nonlinear modes 
    Article dans une revue avec comité de lecture
    DEBEURRE, Marielle; GROLET, Aurélien; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2023-06-15)
    In this paper, the effect of gravity on the nonlinear extreme amplitude vibrations of a slender, vertically-oriented cantilever beam is investigated. The extreme nonlinear vibrations are modeled using a finite element ...
  • Finite element computation of nonlinear modes and frequency response of geometrically exact beam structures 
    Article dans une revue avec comité de lecture
    DEBEURRE, Marielle; GROLET, Aurélien; COCHELIN, Bruno; ccTHOMAS, Olivier (Elsevier BV, 2023-03)
    An original method for the simulation of the dynamics of highly flexible slender structures is presented. The flexible structures are modeled via a finite element (FE) discretization of a geometrically exact two-dimensional ...
  • Subharmonic centrifugal pendulum vibration absorbers allowing a rotational mobility 
    Article dans une revue avec comité de lecture
    MAHE, V.; RENAULT, Alexandre; GROLET, Aurélien; MAHE, Hervé; ccTHOMAS, Olivier (Elsevier BV, 2022-09)
    Rotating machines are often subjected to fluctuating torques, leading to vibrations of the rotor and finally to premature fatigue and noise pollution. This work addresses a new design of centrifugal pendulum vibration ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales