• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
  • Accueil de SAM
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation

Article dans une revue avec comité de lecture
Auteur
DOT, Gauthier
353778 CHU Pitié-Salpêtrière [AP-HP]
557826 Université Paris Cité [UPCité]
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
CHAURASIA, Akhilanand
DUBOIS, Guillaume
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
SAVOLDELLI, Charles
414617 Institut Universitaire de la Face et du Cou [Nice]
HAGHIGHAT, Sara
351566 Shiraz University of Medical Sciences [Iran] [SUMS]
AZIMIAN, Sarina
223521 Iran University of Science and Technology [Tehran] [IUST]
ccRAHBAR TARAMSARI, Ali
SIVARAMAKRISHNAN, Gowri
ISSA, Julien
566614 Poznan University of Medical Sciences [Poland] [PUMS]
DUBEY, Abhishek
SCHOUMAN, Thomas
353778 CHU Pitié-Salpêtrière [AP-HP]
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ccGAJNY, Laurent
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]

URI
http://hdl.handle.net/10985/26183
DOI
10.1016/j.jdent.2024.105130
Date
2024-06
Journal
Journal of Dentistry

Résumé

Objectives: Segmentation of anatomical structures on dento-maxillo-facial (DMF) computed tomography (CT) or cone beam computed tomography (CBCT) scans is increasingly needed in digital dentistry. The main aim of this research was to propose and evaluate a novel open source tool called DentalSegmentator for fully automatic segmentation of five anatomic structures on DMF CT and CBCT scans: maxilla/upper skull, mandible, upper teeth, lower teeth, and the mandibular canal. Methods: A retrospective sample of 470 CT and CBCT scans was used as a training/validation set. The performance and generalizability of the tool was evaluated by comparing segmentations provided by experts and automatic segmentations in two hold-out test datasets: an internal dataset of 133 CT and CBCT scans acquired before orthognathic surgery and an external dataset of 123 CBCT scans randomly sampled from routine examinations in 5 institutions. Results: The mean overall results in the internal test dataset (n = 133) were a Dice similarity coefficient (DSC) of 92.2 ± 6.3% and a normalised surface distance (NSD) of 98.2 ± 2.2%. The mean overall results on the external test dataset (n = 123) were a DSC of 94.2 ± 7.4% and a NSD of 98.4 ± 3.6%. Conclusions: The results obtained from this highly diverse dataset demonstrate that this tool can provide fully automatic and robust multiclass segmentation for DMF CT and CBCT scans. To encourage the clinical deployment of DentalSegmentator, the pre-trained nnU-Net model has been made publicly available along with an extension for the 3D Slicer software. Clinical Significance: DentalSegmentator open source 3D Slicer extension provides a free, robust, and easy-to-use approach to obtaining patient-specific three-dimensional models from CT and CBCT scans. These models serve various purposes in a digital dentistry workflow, such as visualization, treatment planning, intervention, and follow-up.

Fichier(s) constituant cette publication

Nom:
IBHGC_JD_2024_DOT.pdf
Taille:
899.0Ko
Format:
PDF
Description:
DentalSegmentator: robust deep ...
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; SCHOUMAN, Thomas; DUBOIS, Guillaume; ccROUCH, Philippe; ccGAJNY, Laurent (Springer Science and Business Media LLC, 2022)
    Objectives To evaluate the performance of the nnU-Net open-source deep learning framework for automatic multi-task segmentation of craniomaxillofacial (CMF) structures in CT scans obtained for computer-assisted orthognathic ...
  • Accuracy and reliability of automatic three-dimensional cephalometric landmarking 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; RAFFLENBEUL, Frédéric; ARBOTTO, M.; SCHOUMAN, Thomas; ccROUCH, Philippe; ccGAJNY, Laurent (Elsevier, 2020)
    The aim of this systematic review was to assess the accuracy and reliability of automatic landmarking for cephalometric analysis of three-dimensional craniofacial images. We searched for studies that reported results of ...
  • Three-Dimensional Cephalometric Landmarking and Frankfort Horizontal Plane Construction: Reproducibility of Conventional and Novel Landmarks 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; RAFFLENBEUL, Frédéric; KERBRAT, Adeline; SCHOUMAN, Thomas; ccROUCH, Philippe; ccGAJNY, Laurent (MDP, 2021)
    In some dentofacial deformity patients, especially patients undergoing surgical orthodontic treatments, Computed Tomography (CT) scans are useful to assess complex asymmetry or to plan orthognathic surgery. This assessment ...
  • Automatic 3-Dimensional Cephalometric Landmarking via Deep Learning 
    Article dans une revue avec comité de lecture
    DOT, Gauthier; SCHOUMAN, Thomas; CHANG, Shaole; RAFFLENBEUL, Frédéric; KERBRAT, Adeline; ccROUCH, Philippe; ccGAJNY, Laurent (SAGE Publications, 2022-08-18)
    The increasing use of 3-dimensional (3D) imaging by orthodontists and maxillofacial surgeons to assess complex dentofacial deformities and plan orthognathic surgeries implies a critical need for 3D cephalometric analysis. ...
  • Biplanar Low-Dose Radiograph Is Suitable for Cephalometric Analysis in Patients Requiring 3D Evaluation of the Whole Skeleton 
    Article dans une revue avec comité de lecture
    KERBRAT, Adeline; RIVALS, Isabelle; DUPUY, Pauline; DOT, Gauthier; BERG, Britt-Isabelle; ATTALI, Valérie; SCHOUMAN, Thomas (MDPI AG, 2021)
    Background: The biplanar 2D/3D X-ray technology (BPXR) is a 2D/3D imaging system allowing simultaneous stereo-corresponding posteroanterior (PA) and lateral 2D views of the whole body. The aim of our study was to assess ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales