• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
  • Home
  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of the ischial support on muscle force estimation during transfemoral walking

Article dans une revue avec comité de lecture
Author
ccFOUGERON, Nolwenn
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ccBONNET, Xavier
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
1002384 Centre d'Études Biologiques de Chizé - UMR 7372 [CEBC]
ccPANHELLEUX, Brieuc
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ROSE, Jean-Loïc
ccROHAN, Pierre-Yves
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
PILLET, Hélène
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]
ccPILLET, Helene
1001017 Institut de Biomécanique Humaine Georges Charpak [IBHGC]

URI
http://hdl.handle.net/10985/26217
DOI
10.1097/PXR.0000000000000348
Date
2024-04
Journal
Prosthetics & Orthotics International

Abstract

Background: Transmission of loads between the prosthetic socket and the residual limb is critical for the comfort and walking ability of people with transfemoral amputation. This transmission is mainly determined by the socket tightening, muscle forces, and socket ischial support. However, numerical investigations of the amputated gait, using modeling approaches such as MusculoSkeletal (MSK) modeling, ignore the weight-bearing role of the ischial support. This simplification may lead to errors in the muscle force estimation. Objective: This study aims to propose a MSK model of the amputated gait that accounts for the interaction between the body and the ischial support for the estimation of the muscle forces of 13 subjects with unilateral transfemoral amputation. Methods: Contrary to previous studies on the amputated gait which ignored the interaction with the ischial support, here, the contact on the ischial support was included in the external loads acting on the pelvis in a MSK model of the amputated gait. Results: Including the ischial support induced an increase in the activity of the main abductor muscles, while adductor muscles' activity was reduced. These results suggest that neglecting the interaction with the ischial support leads to erroneous muscle force distribution considering the gait of people with transfemoral amputation. Although subjects with various bone geometries, particularly femur lengths, were included in the study, similar results were obtained for all subjects. Conclusions: Eventually, the estimation of muscle forces from MSK models could be used in combination with finite element models to provide quantitative data for the design of prosthetic sockets.

Files in this item

Name:
IBHGC_POI_2024_FOUGERON.pdf
Size:
443.6Kb
Format:
PDF
Description:
Effect of the ischial support ...
View/Open

Collections

  • Institut de Biomécanique Humaine Georges Charpak (IBHGC)

Related items

Showing items related by title, author, creator and subject.

  • Prediction of muscle forces in residual limb during walking: comparison of transfemoral and Gritti–Stokes amputations 
    Communication avec acte
    FOUGERON, Nolwenn; BONNET, Xavier; PANHELLEUX, Brieuc; ROSE, Jean-Loïc; ccROHAN, Pierre-Yves; ccPILLET, Helene (Taylor and Francis, 2020)
    Evaluation of muscle forces is relevant to understand walking strategies of amputated subjects. Such results could be implemented in finite element modelling to study the interaction between the residual limb and the socket ...
  • In vivo identification of the mechanical properties of thigh tissues from FreeHand Ultrasound for the numerical investigation of loads at the socket/residual limb interface of amputee people 
    Communication sans acte
    FOUGERON, Nolwenn; BONNET, Xavier; ROSE, Jean-Loïc; ccROHAN, Pierre-Yves; ccPILLET, Helene (2019)
    Prosthetic sockets are custom-designed and are decisive for functionality and comfort of limb prosthesis. To ensure load transmission and stability, high interface stresses are applied. Several computer models of the ...
  • Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modelling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues 
    Article dans une revue avec comité de lecture
    FOUGERON, Nolwenn; HEARING, Diane; ROSE, Jean-Loïc; BONNET, Xavier; ccROHAN, Pierre-Yves; ccPILLET, Helene (American Society of Mechanical Engineers, 2020)
    Finite Element Analysis (FEA) is a numerical modelling tool vastly employed in research facilities to analyse and predict load transmission between the human body and a medical device, such as a prosthesis or an exoskeleton. ...
  • Finite element analysis of the stump-ischial containment socket interaction: a technical note 
    Article dans une revue avec comité de lecture
    FOUGERON, Nolwenn; ccROHAN, Pierre-Yves; ROSE, Jean-Loïc; BONNET, Xavier; ccPILLET, Helene (Elsevier BV, 2022-07)
    The role of the above-knee socket is to ensure the load transfer via the coupling of residual limb-prosthesis with minimal discomfort and without damaging the soft tissues. Modelling is a potential tool to predict socket ...
  • Femoral residuum/socket kinematics using fusion between 3D motion capture and stereo radiography 
    Communication avec acte
    PANHELLEUX, Brieuc; FOUGERON, Nolwenn; RUYSSEN, Nicolas; BONNET, Xavier; ccROHAN, Pierre-Yves; ccPILLET, Helene (Taylor and Francis, 2020)
    Measurement of femur motion relative to the socket in gait in TF amputated patients can be a good indicator of prosthesis outcome. Our model, using low dose bi- planar radiography and motion capture, gives a prediction of ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales