• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
  • Accueil de SAM
  • Laboratoire de Conception Fabrication Commande (LCFC)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time forging process control: integrating billet-related surrogate and machine behavior models

Article dans une revue avec comité de lecture
Auteur
ccURIBE, David
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccDURAND, Camille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBAUDOUIN, Cyrille
107452 Laboratoire de Conception Fabrication Commande [LCFC]
ccBIGOT, Regis
107452 Laboratoire de Conception Fabrication Commande [LCFC]

URI
http://hdl.handle.net/10985/26301
DOI
10.1007/s10845-025-02603-7
Date
2025-04
Journal
Journal of Intelligent Manufacturing

Résumé

This study introduces a predictive surrogate model for real-time control in cold upsetting processes, incorporating both material and machine behaviors. Traditional approaches often simplify machine behavior as rigid or with constant stiffness; however, the proposed method dynamically couples material and machine responses, accounting for efficiency changes across different upsetting operations. This is achieved through the integration of a data-driven billet-related surrogate model with a machine-related analytical blow efficiency prediction, accurately capturing elastic energy losses. For the construction of the surrogate model in this use case, a multilayer perceptron artificial neural network (MLP ANN) was employed, demonstrating high predictive accuracy with a dataset comprising 2000 entries generated using Latin Hypercube Sampling (LHS) and numerical simulations. The model provides precise predictions for key outputs like forging load and plastic energy. Experimental validation shows prediction errors below 5% for energy setpoints, reduced to under 1% with blow efficiency correction. The general methodology of surrogate model creation can be adapted for various metal-forming processes, providing a versatile framework for real-time simulation and control.

Fichier(s) constituant cette publication

Nom:
LCFC_JIM_2025_URIBE.pdf
Taille:
2.493Mo
Format:
PDF
Voir/Ouvrir
CC BY
Ce document est diffusé sous licence CC BY

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire de Conception Fabrication Commande (LCFC)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Predictive control for a single-blow cold upsetting using surrogate modeling for a digital twin 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccDURAND, Camille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2023-12)
    In the realm of forging processes, the challenge of real-time process control amid inherent variabilities is prominent. To tackle this challenge, this article introduces a Proper Orthogonal Decomposition (POD)-based ...
  • Accurate real-time modeling for multiple-blow forging 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Springer Science and Business Media LLC, 2024-10)
    Numerical simulations are crucial for predicting outcomes in forging processes but often neglect dynamic interactions within forming tools and presses. This study proposes an approach for achieving accurate real-time ...
  • Enhancing metal-forming predictions with VR-infused digital twin models 
    Communication avec acte
    ccURIBE, David; ccBAUDOUIN, Cyrille; ccLOCARD, Yoan; ccDURAND, Camille; ccBIGOT, Regis (Materials Research Forum LLC, 2024-05)
    This article presents a two-step method to enhance metal-forming predictions by integrating Virtual Reality (VR) into Digital Twin models, focusing on single-blow cold copper upsetting operations. The process begins with ...
  • Enhancing data representation in forging processes: Investigating discretization and R-adaptivity strategies with Proper Orthogonal Decomposition reduction 
    Article dans une revue avec comité de lecture
    ccURIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; ccBIGOT, Regis (Elsevier, 2024-12)
    Effective data reduction techniques are crucial for enhancing computational efficiency in complex industrial processes such as forging. In this study, we investigate various discretization and mesh adaptivity strategies ...
  • Towards the Real-Time Piloting of a Forging Process: Development of a Surrogate Model for a Multiple Blow Operation 
    Communication avec acte
    URIBE, David; ccDURAND, Camille; ccBAUDOUIN, Cyrille; KRUMPIPE, Pierre; ccBIGOT, Regis (Springer Nature Switzerland, 2023-08)
    Forging processes are defined by variables related to the workpiece, the tools, the machine, and the process itself, and these variables are called process variables. They have a direct impact on the quality of the finished ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales