• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hybrid twin applied to structura lhealth monitoring

Communication avec acte
Auteur
ccRODRIGUEZ, Sebastian
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccDI LORENZO, Daniele
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccCHINESTA SORIA, Francisco
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
564849 ESI Group [ESI Group]
ccMONTEIRO, Eric
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccRÉBILLAT, Marc
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]
ccMECHBAL, Nazih
86289 Laboratoire Procédés et Ingénierie en Mécanique et Matériaux [PIMM]

URI
http://hdl.handle.net/10985/26928
DOI
10.7712/150123.9955.444924
Date
2023

Résumé

To ensure the proper functioning of a structure, a monitoring during its life cycle is necessary, with the objective of detecting in time any possible anomalies or damage of the structure. To accomplish this, high fidelity numerical models that correctly capture the physics of the system should be developed, so that this model can be further used to achieve a desired design goal, as well as to ensure the longevity of the structure. However, the complexity of real phenomena often makes it impossible for physics-based models to deliver a correct prediction of reality, which limits their use. To overcome this limitation, one solution consists in building a model based on experimental data to ensure correct predictability. Nevertheless, this imposes technical limitations, since obtaining data is often scarce due to limited number of sensors or high costs of experimental campaigns. In this context, hybrid twins emerge as an attractive solution to this problem. Hybrid twins consists in enriching a physics-based model by building an ignorance model, which corrects the predictions of the numerical model. This allows to build a representative model of reality by using a limited number of sensors, since the global behavior of the system is reproduced by the physical model, making the ignorance model to be constructed in a coarse way. In this sense, the present work shows the implementation of a hybrid twin, applied to the monitoring of a structure using Structural Health Monitoring techniques. The performance of the developed hybrid twin is tested on synthetic data, where the hybrid twin built from a simplified physics-based model allows to correct the latter and can be used later to accurately predict damage location on a more complex structure.

Fichier(s) constituant cette publication

Nom:
PIMM_EP_Rebillat_3_2023
Taille:
802.5Ko
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Procédés et Ingénierie en Mécanique et Matériaux (PIMM)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Advanced harmonic-hybrid reduced model for solving parametric dynamics in structural health monitoring 
    Communication sans acte
    ccRODRÍGUEZ ITURRA, Rodrigo Alejandro; CHINESTA, FRANCISCO; ccDI LORENZO, Daniele; ccMONTEIRO, Eric; ccNAZIH, MECHBAL; ccMARC, RÉBILLAT (2023-07)
    This work present an innovative technique that helps to accelerate structural dynamics simulations when there is a defect in the structure and at the same time, allows its approximation in a parametric way by using reduced ...
  • Single atom convolutional matching pursuit: Theoretical framework and application to Lamb waves based structural health monitoring 
    Article dans une revue avec comité de lecture
    ccRODRIGUEZ, Sebastian; ccRÉBILLAT, Marc; ccPAUNIKAR, Shweta; ccMARGERIT, Pierre; ccMONTEIRO, Eric; ccCHINESTA SORIA, Francisco; ccMECHBAL, Nazih (Elsevier BV, 2025-06)
    Lamb Waves (LW) based Structural Health Monitoring (SHM) aims to monitor the health state of thin structures. An Initial Wave Packet (IWP) is sent in the structure and interacts with boundaries, discontinuities, and with ...
  • Damage identification technique by model enrichment for structural elastodynamic problems 
    Article dans une revue avec comité de lecture
    ccDI LORENZO, Daniele; RODRIGUEZ, Sebastian; ccCHAMPANEY, Laurent; ccGERMOSO, Claudia; ccBERINGHIER, Marianne; ccCHINESTA SORIA, Francisco (Elsevier BV, 2024-06)
    Structural Health Monitoring (SHM) techniques are key to monitor the health state of engineering structures, where damage type, location and severity are to be estimated by applying sophisticated techniques to signals ...
  • Optimization of precharge placement in sheet molding compound process 
    Article dans une revue avec comité de lecture
    ccEBRAHIMIAN, Fariba; RODRIGUEZ, Sebastian; ccDI LORENZO, Daniele; ccCHINESTA SORIA, Francisco (Springer Science and Business Media LLC, 2024-06-01)
    AbstractThis study aims to provide precise predictions for the compression of reinforced polymers during the sheet Molding Compound (SMC) process, ensuring the attainment of a predefined structure while preventing material ...
  • Optimal velocity planning based on the solution of the Euler-Lagrange equations with a neural network based velocity regression 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; ccDI LORENZO, Daniele; CHAMPANEY, Victor; ccCUETO, Elias; ccCHINESTA SORIA, Francisco (American Institute of Mathematical Sciences (AIMS), 2024-07)
    Trajectory optimization is a complex process that includes an infinite number of possibilities and combinations. This work focuses on a particular aspect of the trajectory optimization, related to the optimization of a ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales