Robotized Incremental Sheet Forming Trajectory Control Using Deep Neural Network for Force/Torque Compensator and Task-Space Error Tracking Controller
Article dans une revue avec comité de lecture
Auteur
Date
2025-01-09Journal
Robotized Incremental Sheet Forming Trajectory Control using Deep Neural Network for Force/Torque Compensator and Task-Space Error Tracking ControllerRésumé
In Robotized Incremental Sheet Forming (ISF), achieving precise geometrical accuracy is a challenging task due to trajectory tool center point (TCP) position errors at the forming tool attached to the robot’s end-effector. These errors primarily arise from external disturbance forces and torques generated during the interaction between the forming tool and the elastic metal sheet. While jointtorque space controllers can mitigate reaction forces and torques through dynamic modeling, jointspace control has inherent limitations, particularly for industrial high-load robots like the ABB IRB 8700. To overcome these challenges, thiswork implements an external force/torque (F/T) compensator in task-space using a deep neural network. The network predicts trajectory errors induced by reaction forces and torques measured via a 6-axis F/T sensor. Additionally, the forming tool’s trajectory is precisely monitored using a laser tracker, which serves as a feedback mechanism in a closed-loop task-space error-tracking controller. This controller detects and corrects trajectory deviations in real time. By integrating the F/T compensator and the task-space error-tracking controller, the proposed approach effectively compensates for reaction forces and torques while addressing additional errors introduced by other process-related factors. This integration results in significantly enhanced accuracy in robotic incremental forming processes.
Fichier(s) constituant cette publication
- Nom:
- LCFC_SSR_2025_ZIMMER.pdf
- Taille:
- 18.85Mo
- Format:
- Description:
- Robotized Incremental Sheet ...
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureWANG, Zeya; ZIMMER-CHEVRET, Sandra; LÉONARD, François; ABBA, Gabriel (Springer Science and Business Media LLC, 2021-09)Cold metal transfer (CMT)–based wire-arc additive manufacturing (WAAM) is increasingly popular for the production of large and complex metallic components due to its high deposition rate, low heat input, and excellent ...
-
Article dans une revue avec comité de lectureWANG, Zeya; ZIMMER-CHEVRET, Sandra; LÉONARD, François; ABBA, Gabriel (Springer Science and Business Media LLC, 2021-09)Cold metal transfer (CMT)-based wire-arc additive manufacturing (WAAM) is a promising method for the production of large-scale and complex metallic parts because of its high efficiency, less heat input and low cost. However, ...
-
Off-line path programming for three-dimensional robotic friction stir welding based on Bézier curves Article dans une revue avec comité de lectureKOLEGAIN, Komlan; LEONARD, François; ZIMMER-CHEVRET, Sandra; BEN ATTAR, Amarilys; ABBA, Gabriel (Emerald, 2018)Robotic friction stir welding (RFSW) is an innovative process which enables solid-state welding of aluminum parts using robots. A major drawback of this process is that the robot joints undergo elastic deformation during ...
-
Communication avec acteZIMMER-CHEVRET, Sandra; LAYE, Julien; GOUSSAIN, Jean-Claude; MARTIN, Patrick;
LANGLOIS, Laurent (2010)
This paper presents an experimental methodology to determine a Friction Stir Welding (FSW) means of production based on the experimental study of the tool / material mechanical interactions generated during the welding ... -
Communication avec acteFriction Stir Welding (FSW) est considéré comme un procédé de soudage à l’état solide très demandé pour souder des alliages d'aluminium. Au cours des dernières années, les chercheurs se sont orientés vers l’industrialisation ...
