Nonlinear optimal perturbations in a Couette flow: bursting and transition
Article dans une revue avec comité de lecture
Date
2013Journal
Journal of Fluid MechanicsAbstract
This paper provides the analysis of bursting and transition to turbulence in a Couette flow, based on the growth of nonlinear optimal disturbances. We use a global variational procedure to identify such optimal disturbances, defined as those initial perturbations yielding the largest energy growth at a given target time, for given Reynolds number and initial energy. The nonlinear optimal disturbances are found to be characterized by a basic structure, composed of inclined streamwise vortices along localized regions of low and high momentum. This basic structure closely recalls that found in boundary-layer flow (Cherubini et al., J. Fluid Mech., vol. 689, 2011, pp. 221–253), indicating that this structure may be considered the most ‘energetic’ one at short target times. However, small differences in the shape of these optimal perturbations, due to different levels of the initial energy or target time assigned in the optimization process, may produce remarkable differences in their evolution towards turbulence. In particular, direct numerical simulations have shown that optimal disturbances obtained for large initial energies and target times induce bursting events, whereas for lower values of these parameters the flow is directly attracted towards the turbulent state. For this reason, the optimal disturbances have been classified into two classes, the highly dissipative and the short-path perturbations. Both classes lead the flow to turbulence, skipping the phases of streak formation and secondary instability which are typical of the classical transition scenario for shear flows. The dynamics of this transition scenario exploits three main features of the nonlinear optimal disturbances: (i) the large initial value of the streamwise velocity component; (ii) the streamwise dependence of the disturbance; (iii) the presence of initial inclined streamwise vortices. The short-path perturbations are found to spend a considerable amount of time in the vicinity of the edge state (Schneider et al., Phys. Rev. E, vol. 78, 2008, 037301), whereas the highly dissipative optimal disturbances pass closer to the edge, but they are rapidly repelled away from it, leading the flow to high values of the dissipation rate. After this dissipation peak, the trajectories do not lead towards the turbulent attractor, but they spend some time in the vicinity of an unstable periodic orbit (UPO). This behaviour led us to conjecture that bursting events can be obtained not only as homoclinic orbits approaching the UPO, as recently found by van Veen & Kawahara (Phys. Rev. Lett., vol. 107, 2011, p. 114501), but also as heteroclinic orbits between the equilibrium solution on the edge and the UPO.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE TULLIO, Marco; DE PALMA, Pietro; PASCAZIO, Giuseppe (American Society of Mechanical Engineers, 2013)This work provides a three-dimensional energy optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of roughness elements. The immersed ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE TULLIO, Marco; DE PALMA, Pietro; PASCAZIO, Giuseppe (Cambridge University Press (CUP), 2013)This work provides a global optimization analysis, looking for perturbations inducing the largest energy growth at a finite time in a boundary-layer flow in the presence of smooth three-dimensional roughness elements. ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; ROBINET, Jean-Christophe (Cambridge University Press (CUP), 2013)The present work provides an optimal control strategy, based on the nonlinear Navier–Stokes equations, aimed at hampering the rapid growth of unsteady finite-amplitude perturbations in a Blasius boundary-layer flow. A ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; ALIZARD, Frédéric; ROBINET, Jean-Christophe (American Institute of Physics, 2010)The three-dimensional stability dynamics of a separation bubble over a flat plate has been studied in both linear and nonlinear conditions. Using a global eigenvalue analysis, two centrifugal global modes are identified: ...
-
Article dans une revue avec comité de lectureCHERUBINI, Stefania; DE PALMA, Pietro; BOTTARO, Alessandro; ROBINET, Jean-Christophe (American Physical Society (APS), 2010)Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer ...