Detection of structural damage using the exponential sine sweep method
Communication avec acte
Date
2013Abstract
Structural damages can result in nonlinear dynamical responses. Thus, estimating the nonlinearities generated by damages potentially allows detecting them. In this paper, an original approach called the ES2D (Exponential Sine Sweep Damage Detection) is proposed for nonlinear damage detection. This approach is based on a damage index that reflects the ratio of the energy contained in the nonlinear part of the output versus the energy contained in its linear part. For this, we suppose that the system under study can be modeled as a cascade of Hammerstein models, made of N branches in parallel composed of an elevation to the nth power followed by a linear filter called the nth order kernel. The Exponential Sine Sweep Method (ESSM) is then used to identify the linear and nonlinear parts of the model. Exponential sine sweeps are a class of sine sweeps that allow estimating a system’s first kernels in a wide frequency band from only one measurement. The ES2D method is illustrated experimentally on two actual composite plates with surface-mounted PZT-elements: one healthy and one damaged (impact). A given propagation path between a sensor and an actuator in the system is here under investigation. Using the ESSM, the first kernels modeling this propagation path are estimated for both the damaged and undamaged states. On the basis of these estimated first Kernels, the damage index is built. Its detecting efficiency and its insensitivity to environmental noise are then assessed.
Files in this item
- Name:
- PIMM-IWSHM-REBILLAT-2013.pdf
- Size:
- 1014.Kb
- Format:
- Description:
- Article principal
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureStructural damages can result in nonlinear dynamical signatures that can significantly enhance their detection. An original nonlinear damage detection approach is proposed that is based on a cascade of Hammerstein models ...
-
Communication avec acteJAUSSAUD, Gladys; REBUFA, Jocelyn; FOURNIER, Marc; LOGEAIS, Matthieu; BENCHEIKH, Nabil; MECHBAL, Nazih; RÉBILLAT, Marc (NTD, 2019)In the context of Condition Based Maintenance (CBM) for aircrafts, Structural Health Monitoring (SHM) is one main field of research. Detection and localization of damages in a structure request reliability of the equipment ...
-
Laser shock a novel way to generate calibrated delamination in composites: concept and first results Communication avec acteGHRIB, Meriem; BERTHE, Laurent; ECAULT, Romain; MECHBAL, Nazih; GUSKOV, Mikhail; RÉBILLAT, Marc (2015)Structural Health Monitoring (SHM) has been gaining importance in recent years. SHM aims at providing structures with similar functionality as the biological nervous system and it is organized into four main steps: detection, ...
-
Article dans une revue avec comité de lectureIn this paper, a probabilistic multi-class pattern recognition algorithm is developed for damage detection, localization, and quantification in smart mechanical structures. As these structures can face damages of different ...