Towards gigantic RVE sizes for 3D stochastic fibrous networks
Article dans une revue avec comité de lecture
Date
2014Journal
International Journal of Solids and StructuresRésumé
The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statistical RVE size determination method is applied to a specific model of random microstructure: Poisson fibers. The definition of RVE size is related to the concept of integral range. What happens in microstructures exhibiting an infinite integral range? Computational homogenization for thermal and elastic properties is performed through finite elements, over hundreds of realizations of the stochastic microstructural model, using uniform and mixed boundary conditions. The generated data undergoes statistical treatment, from which gigantic RVE sizes emerge. The method used for determining RVE sizes was found to be operational, even for pathological media, i.e., with infinite integral range, interconnected percolating porous phase and infinite contrast of properties
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Chapitre d'ouvrage scientifiqueDIRRENBERGER, Justin; FOREST, Samuel; JEULIN, Dominique (Springer New York, 2019)Architectured materials involve geometrically engineered distributions of microstructural phases at a scale comparable to the scale of the component, thus calling for new models in order to determine the effective properties ...
-
Article dans une revue avec comité de lectureWANG, Zhen-Pei; POH, Leong Hien; DIRRENBERGER, Justin; ZHU, Yilin; FOREST, Samuel (Elsevier, 2017)An important feature that drives the auxetic behaviour of the star-shaped auxetic structures is the hinge-functional connection at the vertex connections. This feature poses a great challenge for manufacturing and may lead ...
-
Article dans une revue avec comité de lectureWANG, Zhen-Pei; POH, Leong Hien; ZHU, Yilin; DIRRENBERGER, Justin; FOREST, Samuel (Elsevier, 2019)This paper focuses on a systematic isogeometric design approach for the optimal petal form and size characterization of tetra-petals auxetics, considering both plane stress and plane strain conditions. The underlying ...
-
Article dans une revue avec comité de lectureVIARD, Antoine-Emmanuel; DIRRENBERGER, Justin; FOREST, Samuel (Elsevier, 2020)Under tension low carbon steel exhibits inhomogeneous plastic deformation. This instability called Piobert-Lüders banding creates fronts of localized strain that propagate in the structure. To date, Lüders banding has been ...
-
Scalar-based strain gradient plasticity theory to model size-dependent kinematic hardening effects Article dans une revue avec comité de lectureA common belief in phenomenological strain gradient plasticity modeling is that including the gradient of scalar variables in the constitutive setting leads to size-dependent isotropic hardening, whereas the gradient of ...