Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator
Article dans une revue avec comité de lecture
Date
2014Journal
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile EngineeringAbstract
This paper deals with driving simulation and in particular with the important issue of motion sickness. The paper proposes a methodology to evaluate the objective illness rating metrics deduced from the motion sickness dose value and questionnaires for both a static simulator and a dynamic simulator. Accelerations of the vestibular cues (head movements) of the subjects were recorded with and without motion platform activation. In order to compare user experiences in both cases, the head-dynamics-related illness ratings were computed from the obtained accelerations and the motion sickness dose values. For the subjective analysis, the principal component analysis method was used to determine the conflict between the subjective assessment in the static condition and that in the dynamic condition. The principal component analysis method used for the subjective evaluation showed a consistent difference between the answers given in the sickness questionnaire for the static platform case from those for the dynamic platform case. The two-tailed Mann–Whitney U test shows the significance in the differences between the self-reports to the individual questions. According to the two-tailed Mann–Whitney U test, experiencing nausea (p = 0.019 < 0.05) and dizziness (p = 0.018 < 0.05) decreased significantly from the static case to the dynamic case. Also, eye strain (p = 0.047 < 0.05) and tiredness (p = 0.047 < 0.05) were reduced significantly from the static case to the dynamic case. For the perception fidelity analysis, the Pearson correlation with a confidence interval of 95% was used to study the correlations of each question with the x illness rating component IRx, the y illness rating component IRy, the z illness rating component IRz and the compound illness rating IRtot. The results showed that the longitudinal head dynamics were the main element that induced discomfort for the static platform, whereas vertical head movements were the main factor to provoke discomfort for the dynamic platform case. Also, for the dynamic platform, lateral vestibular-level dynamics were the major element which caused a feeling of fear.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureAYKENT, Baris; MERIENNE, Frédéric; GUILLET, Christophe; PAILLOT, Damien; KEMENY, Andras (SAGE Publications, 2014-01-27)This paper deals with driving simulation and in particular with the important issue of motion sickness. The paper proposes a methodology to evaluate the objective illness rating metrics deduced from the motion sickness ...
-
Article dans une revue avec comité de lectureThe objective of this paper is to present the advantages of Model reference adaptive control (MRAC) motion cueing algorithm against the classical motion cueing algorithm in terms of biome- chanical reactions of the ...
-
Communication avec acteAYKENT, Baris; PAILLOT, Damien; MERIENNE, Frédéric; KEMENY, Andras (2012-07-05)This study proposes a method and an experimental validation to analyze dynamics response of the drivers with respect to the type of the control used in the hexapod driving simulator. In this article, two different forms ...
-
Article dans une revue avec comité de lectureThis paper explains the effect of a motion platform for driving simulators on postural instability and head vibration exposure. The sensed head level-vehicle (visual cues) level longitudinal and lateral accelerations ...
-
Article dans une revue avec comité de lectureAYKENT, Baris; MERIENNE, Frédéric; PAILLOT, Damien; KEMENY, Andras (Wiley, 2013-07-15)This study proposes a method and an experimental validation to analyze dynamics response of the simulator's cabin and platform with respect to the type of the control used in the hexapod driving simulator. In this article, ...