A posteriori error estimation for stochastic static problems
Article dans une revue avec comité de lecture
Date
2014Journal
IEEE Transactions on MagneticsAbstract
To solve stochastic static field problems, a discretization by the Finite Element Method can be used. A system of equations is obtained with the unknowns (scalar potential at nodes for example) being random variables. To solve this stochastic system, the random variables can be approximated in a finite dimension functional space - a truncated polynomial chaos expansion. The error between the exact solution and the approximated one depends not only on the spatial mesh but also on the discretization along the stochastic dimension. In this paper, we propose an a posteriori estimation of the error due to the discretization along the stochastic dimension.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial ...
-
Article dans une revue avec comité de lectureLIU, Sijun; MAC, Hung; MIPO, Jean-Claude; COOREVITS, Thierry; CLENET, Stephane (Institute of Electrical and Electronics Engineers, 2015)In mass production, fabrication processes of electrical machines are not perfectly repeatable with time, leading to dispersions on the dimensions which are not equal to their nominal values. The issue is then to link the ...
-
Article dans une revue avec comité de lectureMAC, Hung; BEDDEK, Karim; KORECKI, Julien; MOREAU, Olivier; CHEVALLIER, Loic; THOMAS, Pierre; CLENET, Stephane (Wiley, 2013)In this paper, we analyze the influence of the uncertainties on the behavior constitutive laws of ferromagnetic materials on the behavior of a turboalternator. A simple stochastic model of anhysteretic nonlinear B(H) curve ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institution of Engineering and Technology, 2012)Methods are now available to solve numerically electromagnetic problems with uncertain input data (behaviour law or geometry). The stochastic approach consists in modelling uncertain data using random variables. Discontinuities ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stephane; MIPO, Jean-Claude (Institute of Electrical and Electronics Engineers, 2011)The numerical solution of partial differential equations onto random domains can be done by using a mapping transforming this random domain into a deterministic domain. The issue is then to determine this one to one random ...