A posteriori error estimation for stochastic static problems
Article dans une revue avec comité de lecture
Date
2014Journal
IEEE Transactions on MagneticsAbstract
To solve stochastic static field problems, a discretization by the Finite Element Method can be used. A system of equations is obtained with the unknowns (scalar potential at nodes for example) being random variables. To solve this stochastic system, the random variables can be approximated in a finite dimension functional space - a truncated polynomial chaos expansion. The error between the exact solution and the approximated one depends not only on the spatial mesh but also on the discretization along the stochastic dimension. In this paper, we propose an a posteriori estimation of the error due to the discretization along the stochastic dimension.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureMAC, Duy Hung; TANG, Z.; CLENET, Stéphane; CREUSE, E. (Elsevier, 2015)In this paper, we propose an a posteriori error estimator for the numerical approximation of a stochastic magnetostatic problem, whose solution depends on the spatial variable but also on a stochastic one. The spatial ...
-
Communication avec acteHENNERON, Thomas; MAC, Hung; CLENET, Stéphane (IEEE, 2015)Model order reduction methods, like the proper orthogonal decomposition (POD), enable to reduce dramatically the size of a finite element (FE) model. The price to pay is a loss of accuracy compared with the original FE ...
-
Article dans une revue avec comité de lectureLIU, Sijun; MAC, Hung; CLENET, Stéphane; COOREVITS, Thierry; MIPO, Jean-Claude (Institute of Electrical and Electronics Engineers, 2015)In mass production, fabrication processes of electrical machines are not perfectly repeatable with time, leading to dispersions on the dimensions which are not equal to their nominal values. The issue is then to link the ...
-
Article dans une revue avec comité de lectureMAC, Duy Hung; CLENET, Stéphane; MIPO, Jean-Claude; MOREAU, Olivier (Institute of Electrical and Electronics Engineers, 2010)A method to solve stochastic partial differential equations on random domains consists in using a one-to-one random mapping function which transforms the random domain into a deterministic domain. With this method, the ...
-
Article dans une revue avec comité de lectureMAC, Hung; CLENET, Stéphane; BEDDEK, Karim; KORECKI, Julien; MOREAU, Olivier; CHEVALLIER, Loic; THOMAS, Pierre (Wiley, 2013)In this paper, we analyze the influence of the uncertainties on the behavior constitutive laws of ferromagnetic materials on the behavior of a turboalternator. A simple stochastic model of anhysteretic nonlinear B(H) curve ...