• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Voir le document
  • Accueil de SAM
  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions

Article dans une revue avec comité de lecture
Auteur
ccAMMAR, Amine
211916 Laboratoire Angevin de Mécanique, Procédés et InnovAtion [LAMPA]
ccCUETO, Elias
161327 Aragón Institute of Engineering Research [Zaragoza] [I3A]
ccCHINESTA SORIA, Francisco
10921 Institut de Recherche en Génie Civil et Mécanique [GeM]

URI
http://hdl.handle.net/10985/8467
DOI
10.1002/cnm.2476
Date
2012
Journal
International Journal for Numerical Methods in Biomedical Engineering

Résumé

The numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of species involved. Although most of the existing techniques rely on the use of Monte Carlo-like techniques, we present here a new technique based on the approximation of the unknown variable (the probability of having a particular chemical state) in terms of a finite sum of separable functions. In this framework, the complexity of the CME grows only linearly with the number of state space dimensions. This technique generalizes the so-called Hartree approximation, by using terms as needed in the finite sums decomposition for ensuring convergence. But noteworthy, the ease of the approximation allows for an easy treatment of unknown parameters (as is frequently the case when modeling gene regulatory networks, for instance). These unknown parameters can be considered as new space dimensions. In this way, the proposed method provides solutions for any value of the unknown parameters (within some interval of arbitrary size) in one execution of the program.

Fichier(s) constituant cette publication

Nom:
LAMPA_IJNMBE_AMMAR_201209.pdf
Taille:
35.58Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire Angevin de Mécanique, Procédés et InnovAtion (LAMPA)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Advanced separated spatial representations for hardly separable domains 
    Article dans une revue avec comité de lecture
    GHNATIOS, Chady; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCUETO, Elias; ccDUVAL, Jean-Louis; ccCHINESTA SORIA, Francisco (Elsevier, 2019)
    This work aims at proposing a new procedure for parametric problems whose separated representation has been considered difficult, or whose SVD compression impacted the results in terms of performance and accuracy. The ...
  • On the effective conductivity and the apparent viscosity of a thin rough polymer interface using PGD‐based separated representations 
    Article dans une revue avec comité de lecture
    ccGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; ccCUETO, Elias; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Wiley, 2020)
    Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
  • Proper generalized decomposition of time-multiscale models 
    Article dans une revue avec comité de lecture
    ccAMMAR, Amine; ccCHINESTA SORIA, Francisco; ccCUETO, Elias; DOBLARÉ, Manuel (Wiley, 2012)
    Models encountered in computational mechanics could involve many time scales. When these time scales cannot be separated, one must solve the evolution model in the entire time interval by using the finest time step that ...
  • Some applications of compressed sensing in computational mechanics: model order reduction, manifold learning, data-driven applications and nonlinear dimensionality reduction 
    Article dans une revue avec comité de lecture
    ccCUETO, Elias; DUVAL, Jean-Louis; IBAÑEZ, Ruben; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Springer Verlag, 2019)
    Compressed sensing is a signal compression technique with very remarkable properties. Among them, maybe the most salient one is its ability of overcoming the Shannon–Nyquist sampling theorem. In other words, it is able to ...
  • Data-driven upscaling of orientation kinematics in suspensions of rigid fibres 
    Article dans une revue avec comité de lecture
    SCHEUER, Adrien; ccCUETO, Elias; KEUNINGS, Roland; ADVANI, Suresh G.; ccABISSET-CHAVANNE, Emmanuelle; ccAMMAR, Amine; ccCHINESTA SORIA, Francisco (Tech Science Press, 2018)
    Describing the orientation state of the particles is often critical in fibre suspension applications. Macroscopic descriptors, the so-called second-order orientation tensor (or moment) leading the way, are often preferred ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales