Proper generalized decomposition of time-multiscale models
Article dans une revue avec comité de lecture
Author
Abstract
Models encountered in computational mechanics could involve many time scales. When these time scales cannot be separated, one must solve the evolution model in the entire time interval by using the finest time step that the model implies. In some cases, the solution procedure becomes cumbersome because of the extremely large number of time steps needed for integrating the evolution model in the whole time interval. In this paper, we considered an alternative approach that lies in separating the time axis (one-dimensional in nature) in a multidimensional time space. Then, for circumventing the resulting curse of dimensionality, the proper generalized decomposition was applied allowing a fast solution with significant computing time savings with respect to a standard incremental integration.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureGHNATIOS, Chady; DELPLACE, Frank; BARASINSKI, Anais; DUVAL, Jean-Louis; CUETO, Elias; AMMAR, Amine; CHINESTA SORIA, Francisco (Wiley, 2020)Composite manufacturing processes usually proceed from preimpregnated preforms that are consolidated by simultaneously applying heat and pressure, so as to ensure a perfect contact compulsory for making molecular diffusion ...
-
Article dans une revue avec comité de lectureCHINESTA SORIA, Francisco; LEYGUE, Adrien; BORDEU, Felipe; AGUADO, Jose Vicente; CUETO, Elias; GONZALEZ, David; ALFARO, Icíar; AMMAR, Amine; HUERTA, Antonio (Springer Verlag, 2013)In this paper we are addressing a new paradigm in the field of simulation-based engineering sciences (SBES) to face the challenges posed by current ICT technologies. Despite the impressive progress attained by simulation ...
-
Communication avec acteNASRI, Mohamed Aziz; AGUADO, Jose Vicente; AMMAR, Amine; CUETO, Elias; CHINESTA SORIA, Francisco; MOREL, Franck; ROBERT, Camille; EL AREM, Saber (Key Engineering Materials, 2015)Forming processes usually involve irreversible plastic transformations. The calculation in that case becomes cumbersome when large parts and processes are considered. Recently Model Order Reduction techniques opened new ...
-
Article dans une revue avec comité de lectureIn this work, we begin by considering the qualitative modeling of biological regulatory systems using process hitting, from which we define its probabilistic counterpart by considering the chemical master equation within ...
-
Article dans une revue avec comité de lectureThe numerical solution of the chemical master equation (CME) governing gene regulatory networks and cell signaling processes remains a challenging task owing to its complexity, exponentially growing with the number of ...