Study of interpolation methods for high-accuracy computations on overlapping grids
Article dans une revue avec comité de lecture
Date
2012Journal
Computers & FluidsAbstract
Overset strategy can be an efficient way to keep high-accuracy discretization by decomposing a complex geometry in topologically simple subdomains. Apart from the grid assembly algorithm, the key point of overset technique lies in the interpolation processes which ensure the communications between the overlapping grids. The family of explicit Lagrange and optimized interpolation schemes is studied. The a priori interpolation error is analyzed in the Fourier space, and combined with the error of the chosen discretization to highlight the modification of the numerical error. When high-accuracy algorithms are used an optimization of the interpolation coefficients can enhance the resolvality, which can be useful when high-frequency waves or small turbulent scales need to be supported by a grid. For general curvilinear grids in more than one space dimension, a mapping in a computational space followed by a tensorization of 1-D interpolations is preferred to a direct evaluation of the coefficient in the physical domain. A high-order extension of the isoparametric mapping is accurate and robust since it avoids the inversion of a matrix which may be ill-conditioned. A posteriori error analyses indicate that the interpolation stencil size must be tailored to the accuracy of the discretization scheme. For well discretized wavelengthes, the results show that the choice of a stencil smaller than the stencil of the corresponding finite-difference scheme can be acceptable. Besides the gain of optimization to capture high-frequency phenomena is also underlined. Adding order constraints to the optimization allows an interesting trade-off when a large range of scales is considered. Finally, the ability of the present overset strategy to preserve accuracy is illustrated by the diffraction of an acoustic source by two cylinders, and the generation of acoustic tones in a rotor–stator interaction. Some recommandations are formulated in the closing section.
Files in this item
Collections
Related items
Showing items related by title, author, creator and subject.
-
Sparse Bayesian Learning of Explicit Algebraic Reynolds-Stress models for turbulent separated flows Article dans une revue avec comité de lectureA novel Sparse Bayesian Learning (SBL) framework is introduced for generating parsimonious stochastic algebraic stress closures for the Reynolds-Averaged Navier–Stokes (RANS) equations from high-fidelity data. The models ...
-
Article dans une revue avec comité de lectureGLOERFELT, Xavier; ROBINET, Jean-Christophe; SCIACOVELLI, Luca; CINNELLA, Paola; GRASSO, Francesco (Cambridge University Press (CUP), 2020)A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ...
-
Article dans une revue avec comité de lectureGLOERFELT, Xavier; BERLAND, Julien (Cambridge University Press (CUP), 2013)Boundary layers constitute a fundamental source of aerodynamic noise. A turbulent boundary layer over a plane wall can provide an indirect contribution to the noise by exciting the structure, and a direct noise contribution. ...
-
Article dans une revue avec comité de lectureGLOERFELT, Xavier; ROBINET, Jean-Christophe (American Physical Society, 2017)The generation of a turbulent inflow is a tricky problem. In the framework of aeroacoustics, another important constraint is that the numerical strategy used to reach a turbulent state induces a spurious noise which is ...
-
Article dans une revue avec comité de lectureROBINET, Jean-Christophe; GLOERFELT, Xavier (Cambridge University Press (CUP), 2019)The recent study of Ren et al. (J. Fluid Mech., vol. 871, 2019, pp. 831–864) investigated the hydrodynamic linear stability of a compressible boundary layer over an insulated flat plate for a non-ideal gas (supercritical ...