On compressibility assumptions in aeroacoustic integrals: a numerical study with subsonic mixing layers
Article dans une revue avec comité de lecture
Date
2014Journal
Journal of the Acoustical Society of AmericaAbstract
Two assumptions commonly made in predictions based on Lighthill’s formalism are investigated: a constant density in the quadrupole expression, and the evaluation of the source quantity from incompressible simulations. Numerical predictions of the acoustic field are conducted in the case of a subsonic spatially evolving two-dimensional mixing layer at Re = 400. Published results of the direct noise computation (DNC) of the flow are use as reference and input for hybrid approaches before the assumptions on density are progressively introduced. Divergence free velocity fields are obtained from an incompressible simulation of the same flow case, exhibiting the same hydrodynamic field as the DNC. Fair comparisons of the hybrid predictions with the reference acoustic field valid both assumptions in the source region for the tested values of the Mach number. However, in the observer region, the inclusion of flow effects in the Lighthill source term is not preserved, which is illustrated through a comparison with the Kirchhoff wave-extrapolation formalism, and with the use of a convected Green function in the integration process.
Files in this item
- Name:
- DYNFLUID_JASA_2014_MARGNAT.pdf
- Size:
- 1.604Mb
- Format:
- Description:
- document article post-print
- Embargoed until:
- 2014-10-30
Collections
Related items
Showing items related by title, author, creator and subject.
-
Sparse Bayesian Learning of Explicit Algebraic Reynolds-Stress models for turbulent separated flows Article dans une revue avec comité de lectureA novel Sparse Bayesian Learning (SBL) framework is introduced for generating parsimonious stochastic algebraic stress closures for the Reynolds-Averaged Navier–Stokes (RANS) equations from high-fidelity data. The models ...
-
Communication avec acteSCIACOVELLI, Luca; GLOERFELT, Xavier; CINNELLA, Paola; GRASSO, Francesco (Springer International Publishing, 2020-05)Hypersonic turbulent boundary layers (HTBL) at Mach number M =6 of a dense gas (PP11) and a perfect gas (air) are investigated by means of Direct Numerical Simulations (DNS), from the laminar to fully turbulent state. The ...
-
Article dans une revue avec comité de lectureCINNELLA, Paola; GRASSO, Francesco; ROBINET, Jean-Christophe; SCIACOVELLI, Luca; GLOERFELT, Xavier (Cambridge University Press (CUP), 2020)A study of dense-gas effects on the stability of compressible boundary-layer flows is conducted. From the laminar similarity solution, the temperature variations are small due to the high specific heat of dense gases, ...
-
Communication avec acteIn this study, a new selective ltering technique is proposed for the Lattice Boltzmann Method. This technique is based on dynamical implementation of the selective filter coefficient . The proposed model makes the latter ...
-
Article dans une revue avec comité de lectureThis work is dedicated to the presentation of a matrix-free method for global linear stability analysis in geometries composed of multi-connected rectangular subdomains. An Arnoldi technique using snapshots in subdomains ...