Micromechanical investigation of the influence of defects in high cycle fatigue
Article dans une revue avec comité de lecture
Date
2014Journal
International Journal of FatigueAbstract
This study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureIn this work, an analysis of both the mechanical response at the grain scale and high cycle multiaxial fatigue criteria is undertaken using finite element (FE) simulations of polycrystalline aggregates. The metallic material ...
-
Communication avec acteIn the present study, the effects of both the microstructure and defects on the high cycle fatigue behavior of the 316L austenitic stainless steel are investigated thanks to finite element simulations of polycrystalline ...
-
Communication avec acteGUERCHAIS, Raphaël; SAINTIER, Nicolas; MOREL, Franck; ROBERT, Camille (Congrès Français de mécanique, 2013)The aim of this study is to analyse the influence of micro-notches on the fatigue behaviour of an electrolytic copper using finite element simulations of polycrystalline aggregates. In these simulations, in which the grains ...
-
Article dans une revue avec comité de lectureIn the present study, the effects of both the microstructure and voids on the high-cycle fatigue behaviour of the 316L austenitic stainless steel are investigated by using finite element simulations of polycrystalline ...
-
Communication avec acteThis study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It ...