• français
    • English
    English
  • Ouvrir une session
Aide
Voir le document 
  •   Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
  • Accueil de SAM
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification of mode couplings in nonlinear vibrations of the steelpan

Article dans une revue avec comité de lecture
Auteur
MONTEIL, Mélodie
33993 Institut Jean Le Rond d'Alembert [DALEMBERT]
1798 Institut d'Alembert [IDA]
ccTHOMAS, Olivier
12568 Laboratoire de Mécanique des Structures et des Systèmes Couplés [LMSSC]
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques [LSIS- INSM]
ccTOUZÉ, Cyril
135264 Dynamique des Fluides et Acoustique [DFA]
135261 Unité de Mécanique [UME]

URI
http://hdl.handle.net/10985/8943
DOI
10.1016/j.apacoust.2014.08.008
Date
2015
Journal
Applied Acoustics

Résumé

The vibrations and sounds produced by two notes of a double second steelpan are investigated, the main objective being to quantify the nonlinear energy exchanges occurring between vibration modes that are responsible of the peculiar sound of the instrument. A modal analysis first reveals the particular tuning of the modes and the systematic occurence of degenerate modes, from the second one, this feature being a consequence of the tuning and the mode localization. Forced vibrations experiments are then performed to follow precisely the energy exchange between harmonics of the vibration and thus quantify properly the mode couplings. In particular, it is found that energy exchanges are numerous, resulting in complicated frequency response curves even for very small levels of vibration amplitude. Simple models displaying 1:2:2 and 1:2:4 internal resonance are then fitted to the measurements, allowing to identify the values of the nonlinear quadratic coupling coefficients resulting from the geometric nonlinearity. The identified 1:2:4 model is finally used to recover the time domain variations of an impacted note in normal playing condition, resulting in an excellent agreement for the temporal behaviour of the first four harmonics.

Fichier(s) constituant cette publication

Nom:
LSIS-INSM_JAA_Thomas_2014_.pdf
Taille:
7.287Mo
Format:
PDF
Voir/Ouvrir

Cette publication figure dans le(s) laboratoire(s) suivant(s)

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Documents liés

Visualiser des documents liés par titre, auteur, créateur et sujet.

  • Conservative Numerical Methods for the Full von Kármán Plate Equations 
    Article dans une revue avec comité de lecture
    BILBAO, Stefan; ccTHOMAS, Olivier; ccTOUZÉ, Cyril; DUCCESCHI, Michele (Wiley, 2015)
    This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary ...
  • An upper bound for validity limits of asymptotic analytical approaches based on normal form theory 
    Article dans une revue avec comité de lecture
    LAMARQUE, Claude-Henri; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (Springer Verlag, 2012)
    Perturbation methods are routinely used in all fields of applied mathematics where analytical solutions for nonlinear dynamical systems are searched. Among them, normal form theory provides a reliable method for systematically ...
  • Nonlinear vibrations of steelpans: analysis of mode coupling in view of modal sound synthesis. 
    Communication avec acte
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (2013)
    Steelpans are musical percussions made from steel barrels. During the manufacturing, the metal is stretched and bended, to produce a set of thin shells that are the differents notes of the instrument. In normal playing, ...
  • Nonlinear forced vibrations of thin structures with tuned eigenfrequencies: the cases of 1:2:4 and 1:2:2 internal resonances 
    Article dans une revue avec comité de lecture
    MONTEIL, Mélodie; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccBENACCHIO, Simon (Springer Verlag, 2014)
    This paper is devoted to the analysis of nonlinear forced vibrations of two particular three degrees-of-freedom (dofs) systems exhibiting second order internal resonances resulting from a harmonic tuning of their natural ...
  • Nonlinear dynamics of coupled oscillators in 1:2 internal resonance: effects of the non-resonant quadratic terms and recovery of the saturation effect 
    Article dans une revue avec comité de lecture
    SHAMI, Zein Alabidin; ccSHEN, Yichang; ccTOUZÉ, Cyril; ccTHOMAS, Olivier; ccGIRAUD-AUDINE, Christophe (Springer Science and Business Media LLC, 2022-08)
    This article considers the nonlinear dynamics of coupled oscillators featuring strong coupling in 1:2 internal resonance. In forced oscillations, this particular interaction is the source of energy exchange, leading to a ...

Parcourir

Tout SAMLaboratoiresAuteursDates de publicationCampus/InstitutsCe LaboratoireAuteursDates de publicationCampus/Instituts

Lettre Diffuser la Science

Dernière lettreVoir plus

Statistiques de consultation

Publications les plus consultéesStatistiques par paysAuteurs les plus consultés

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales