An affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method
Article dans une revue avec comité de lecture
Date
2015Journal
International Journal of PlasticityRésumé
The modeling of heterogeneous materials with an elasto-viscoplastic behavior is generally complex because of the differential nature of the local constitutive law. Indeed, the resolution of the heterogeneous problem involves space-time couplings which are generally difficult to estimate. In the present paper, a new homogenization model based on an affine linearization of the viscoplastic flow rule is proposed. First, the heterogeneous problem is written in the form of an integral equation. The purely thermoelastic and purely viscoplastic heterogeneous problems are solved independently using the self-consistent approximation. Using translated field techniques, the solutions of the above problems are combined to obtain the final self-consistent formulation. Then, some applications concerning two-phase fibre-reinforced composites and polycrystalline materials are presented. When compared to the reference solutions obtained from a FFT spectral method, a good description of the overall response of heterogeneous materials is obtained with the proposed model even when the viscoplastic flow rule is highly non-linear. Thanks to this approach, which is entirely formulated in the real-time space, the present model can be used for studying the response of heterogeneous materials submitted to complex thermomechanical loading paths with a good numerical efficiency.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Communication sans acteThe self-consistent scheme is a common homogenization method that was developed to connect local deformation mechanisms to the overall behavior of heterogeneous disordered materials. In the past decades, many efforts have ...
-
Communication sans acteLa méthode autocohérente [1] est un des outils permettant de faire le lien entre les mécanismes de déformation à l'échelle locale et le comportement macroscopique effectif. Si la méthode autocohérente a été initialement ...
-
Article dans une revue avec comité de lectureTAUPIN, Vincent; BERBENNI, Stéphane; OUAHAB, Razane; BOUAZIZ, Olivier; BERVEILLER, Sophie; PESCI, Raphaël (Elsevier, 2013)In situ tensile tests were performed at room temperature on a ferrite–cementite steel specifically designed for this study. The evolution of the average stress in ferrite during loading was analyzed by X-ray diffraction.Lattice ...
-
Article dans une revue avec comité de lecturePURUSHOTTAM RAJ PUROHIT, Ravi Raj Purohit; RICHETON, Thiebaud; BERBENNI, Stephane; GERMAIN, Lionel; GEY, Nathalie; CONNOLLEY, Thomas; CASTELNAU, Olivier (Elsevier, 2021)A two-phase near- beta titanium alloy (Ti–10V–2Fe–3Al, or Ti-1023) in its as-forged state is employed to illustrate the feasibility of a Bayesian framework to identify single-crystal elastic constants (SEC). High Energy ...
-
Article dans une revue avec comité de lectureDEHMANI, Helmi; PALIN-LUC, Thierry; MAREAU, Charles; KOECHLIN, Samuel; BRUGGER, Charles (ESIS - Elsevier, 2016)Because of their improved magnetic properties, Fe-Si alloys are widely used for new electric motor generations. The use of punching process to obtain these components specially affects their mechanical behavior and fatigue ...