Two-phase inertial flow in homogeneous porous media: A theoretical derivation of a macroscopic model
Article dans une revue avec comité de lecture
Date
2008Journal
Transport in Porous MediaRésumé
The purpose of this article is to derive a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ , the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are on the length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient ∇ pα α to the filtration or Darcy velocity vα in a coupled nonlinear form explicitly given by : (equations) In these equations, Fαα and Fακ are the inertial and coupling inertial correction tensors that are functions of flow-rates. The dominant and coupling permeability tensors K∗αα and K∗ακ and the permeability and viscous drag tensors Kα and Kακ are intrinsic and are those defined the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined from closure problems that are to be solved using a spatially periodic model of a porous medium. The practical procedure to compute these tensors is provided.
Fichier(s) constituant cette publication
Cette publication figure dans le(s) laboratoire(s) suivant(s)
Documents liés
Visualiser des documents liés par titre, auteur, créateur et sujet.
-
Article dans une revue avec comité de lectureLASSEUX, Didier; ABBASIAN ARANI, Ali Akbar; AHMADI-SENICHAULT, Azita (American Institute of Physics, 2011)We report on the controversial dependence of the inertial correction to Darcy’s law upon the filtration velocity (or Reynolds number) for one-phase Newtonian incompressible flow in model porous media. Our analysis is ...
-
Communication sans acteSignificant inertial effects are observed for many applications such as flow in the near-wellbore region, in very permeable reservoirs or in packed-bed reactors. In these cases, the classical description of two-phase flow ...
-
Communication sans acteThe purpose of this work is to propose a derivation of a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. The starting point of the procedure ...
-
Communication sans acteOur interest in this work is the stationary one-phase Newtonian flow in a class of homogeneous porous media at large enough flow rates so that the relationship between the filtration velocity and the pressure gradient is ...
-
Conférence invitéeSignificant inertial effects are observed for many applications such as flow in the near-wellbore region, in very permeable reservoirs or in packed-bed reactors. In these cases, the classical description of two-phase flow ...