• français
    • English
    français
  • Login
Help
View Item 
  •   Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
  • Home
  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conservative Numerical Methods for the Full von Kármán Plate Equations

Article dans une revue avec comité de lecture
Author
BILBAO, Stefan
ccTHOMAS, Olivier
178374 Laboratoire des Sciences de l'Information et des Systèmes : Ingénierie Numérique des Systèmes Mécaniques [LSIS- INSM]
ccTOUZÉ, Cyril
135261 Unité de Mécanique [UME]
DUCCESCHI, Michele
135261 Unité de Mécanique [UME]

URI
http://hdl.handle.net/10985/9876
DOI
10.1002/num.21974
Date
2015
Journal
Numerical Methods for Partial Differential Equations

Abstract

This article is concerned with the numerical solution of the full dynamical von Kármán plate equations for geometrically nonlinear (large-amplitude) vibration in the simple case of a rectangular plate under periodic boundary conditions. This system is composed of three equations describing the time evolution of the transverse displacement field, as well as the two longitudinal displacements. Particular emphasis is put on developing a family of numerical schemes which, when losses are absent, are exactly energy conserving. The methodology thus extends previous work on the simple von Kármán system, for which longitudinal inertia effects are neglected, resulting in a set of two equations for the transverse displacement and an Airy stress function. Both the semidiscrete (in time) and fully discrete schemes are developed. From the numerical energy conservation property, it is possible to arrive at sufficient conditions for numerical stability, under strongly nonlinear conditions. Simulation results are presented, illustrating various features of plate vibration at high amplitudes, as well as the numerical energy conservation property, using both simple finite difference as well as Fourier spectral discretizations.

Files in this item

Name:
LSIS_NMPDE_2015_THOMAS.pdf
Size:
774.6Kb
Format:
PDF
View/Open

Collections

  • Laboratoire d’Ingénierie des Systèmes Physiques Et Numériques (LISPEN)

Related items

Showing items related by title, author, creator and subject.

  • Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements 
    Article dans une revue avec comité de lecture
    VIZZACCARO, Alessandra; GIVOIS, Arthur; LONGOBARDI, Pierluigi; ccSHEN, Yichang; DEÜ, Jean-François; SALLES, Loïc; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (Springer Verlag, 2020)
    Non-intrusive methods have been used since two decades to derive reduced-order models for geometrically nonlinear structures, with a particular emphasis on the so-called STiffness Evaluation Procedure (STEP), relying on ...
  • Reduced-order modeling of geometrically nonlinear rotating structures using the direct parametrisation of invariant manifolds 
    Article dans une revue avec comité de lecture
    MARTIN, Adrien; OPRENI, Andrea; ccVIZZACCARO, Alessandra; ccDEBEURRE, Marielle; SALLES, Loic; FRANGI, Attilio; ccTHOMAS, Olivier; TOUZÉ, Cyril (Centre pour la Communication Scientifique Directe (CCSD), 2023-06)
    The direct parametrisation method for invariant manifolds is a nonlinear reduction technique which derives nonlinear mappings and reduced-order dynamics that describe the evolution of dynamical systems along a low-dimensional ...
  • Backbone curves of coupled cubic oscillators in one-to-one internal resonance: bifurcation scenario, measurements and parameter identification 
    Article dans une revue avec comité de lecture
    GIVOIS, Arthur; TAN, Jin-Jack; ccTOUZÉ, Cyril; ccTHOMAS, Olivier (Springer Science and Business Media LLC, 2020-02)
    A system composed of two cubic nonlinear oscillators with close natural frequencies, and thus displaying a 1:1 internal resonance, is studied both theoretically and experimentally, with a special emphasis on the free ...
  • Comparison of Reduction Methods for Finite Element Geometrically Nonlinear Beam Structures 
    Article dans une revue avec comité de lecture
    ccSHEN, Yichang; VIZZACCARO, Alessandra; KESMIA, Nassim; SALLES, Loïc; ccTHOMAS, Olivier; ccTOUZÉ, Cyril (MDPI AG, 2021-03)
    The aim of this contribution is to present numerical comparisons of model-order reduction methods for geometrically nonlinear structures in the general framework of finite element (FE) procedures. Three different methods ...
  • Model order reduction methods for geometrically nonlinear structures: a review of nonlinear techniques 
    Article dans une revue avec comité de lecture
    ccTOUZÉ, Cyril; VIZZACCARO, Alessandra; ccTHOMAS, Olivier (Springer, 2021-07)
    This paper aims at reviewing nonlinear methods for model order reduction in structures with geometric nonlinearity, with a special emphasis on the techniques based on invariant manifold theory. Nonlinear methods differ ...

Browse

All SAMCommunities & CollectionsAuthorsIssue DateCenter / InstitutionThis CollectionAuthorsIssue DateCenter / Institution

Newsletter

Latest newsletterPrevious newsletters

Statistics

Most Popular ItemsStatistics by CountryMost Popular Authors

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales

ÉCOLE NATIONALE SUPERIEURE D'ARTS ET METIERS

  • Contact
  • Mentions légales