Hardening effects on strain localization predictions in porous ductile materials using the bifurcation approach
Article dans une revue avec comité de lecture
Date
2015Journal
Mechanics of MaterialsAbstract
The localization of deformation into planar bands is often considered as the ultimate stage of strain prior to ductile fracture. In this study, ductility limits of metallic materials are predicted using the Gurson–Tvergaard–Needleman (GTN) damage model combined with the bifurcation approach. Both the GTN constitutive equations and the Rice bifurcation criterion are implemented into the finite element (FE) code ABAQUS/Standard within the framework of large plastic strains and a fully three-dimensional formulation. The current contribution focuses on the effect of strain hardening on ductility limit predictions. It is shown that the choice of void nucleation mechanism has an important influence on the sensitivity of the predicted ductility limits to strain hardening. When strain-controlled nucleation is considered, varying the hardening parameters of the fully dense matrix material has no effect on the porosity evolution and, consequently, very small impact on the predicted ductility limits. For stress-controlled nucleation, the porosity evolution is directly affected by the strain hardening characteristics, which induce a significant effect on the predicted ductility limits. This paper also discusses the use of a micromechanics-based calibration for the GTN q -parameters in the case of strain-controlled nucleation, which is also shown to allow accounting for the hardening effects on plastic strain localization.
Files in this item
Related items
Showing items related by title, author, creator and subject.
-
Article dans une revue avec comité de lectureThin structures are commonly designed and employedin engineering industries to save material, reduce weight and improve the overall performance of products. The finite element (FE) simulation of such thin structural ...
-
Article dans une revue avec comité de lectureIn this contribution, the formulation of the SHB8PS continuum shell finite element is extended to anisotropic elastic-plastic behavior models with combined isotropic-kinematic hardening at large deformations. The resulting ...
-
Communication avec acteIn this paper, the performance of the solid-shell finite element SHB8PS is assessed in the context of sheet metal forming simulation using anisotropic elastic-plastic behavior models. This finite element technology has ...
-
Communication avec acteMANSOURI, Lotfi; CHALAL, Hocine; ABED-MERAIM, Farid ; BALAN, Tudor (Association Française de Mécanique, 2011)Le phénomène de localisation des déformations plastiques, qui apparait lors d’opérations de mise en forme des tôles, représente l’une des principales causes de rebut des pièces produites dans l’industrie. Plusieurs critères ...
-
Article dans une revue avec comité de lectureThe ductility limits of an St14 steel are investigated using an elastic‒plastic‒damage model and bifurcation theory. An associative J2-flow theory of plasticity is coupled with damage within the framework of continuum ...